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Abstract. In this paper we consider the Riesz potential I, (B- Riesz potential), associ-

ated with the Laplace-Bessel differential operator Ag = Z + Z - (% . We prove that

de

the B- Rzesz potentml 1, o ] bounded from the local complementary genemlzzed B-Morrey
2,7
space M{O} ( k+) to /\/1{0} (Rf 1), where 0 < a <n+|y|, a/(n+|v]) = 1/p—1/q,

L<p<(n+hl)/a, ;+5 =1
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1. Introduction

In the theory of partial differential equations, Morrey spaces MP-*(R™) play an important
role. They were introduced by C. Morrey in 1938 [20] and defined as follows: for 0 <
A<n,1<p<oo, fe MPANRM) I f € L})OC(R”) and

||f||/v1m = HfHMp,A(Rn) = we§33>or_%||fHLp(B(z,r)) < 00.

If A = 0, then MPAR™) = L,(R"); if A = n, then MPA(R") = Loo(R"); if A < 0 or
A > n, then MP*(R") = O, where O is the set of all functions equivalent to 0 on R™.
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These spaces appeared to be quite useful in the study of the local behaviour of the
solutions to elliptic partial differential equations, apriori estimates, and other topics in
the theory of partial differential equations.

Given f € WLP¢(R™), WMP*(R™) denotes the weak Morrey space, and

HfHWMp,% = ||f||WMP~/\(R") = xeﬂg}f%>07ﬂ_%”fHWLp(B(a:,r)) < o0,

where WL,(R") denotes the weak L,(R™) spaces.

F. Chiarenza and M. Frasca [7] studied the boundedness of the maximal operator M
in Morrey spaces M, A (R™) (see, also [5], [6]). D. R. Adams [1] studied the boundedness
of the Riesz potential in Morrey spaces and proved the follows statement (see, also [6]):

If in place of the power function r* in the definition of M, \(R") we consider any
positive measurable weight function w(r), then it becomes generalized Morrey spaces

M, o (R™).

Definition 1. Let w(r) positive measurable weight function on (0,00) and 1 < p < oo.
We denote by MP“(R™) the generalized Morrey spaces, the spaces of all functions f €
LIo¢(R™) with finite quasinorm
171 i
W (Rn) — sup — L,(B(z,r))"
Mr ( ) z€R™ r>0 w(r) p( (33 7”))

T. Mizuhara [19], E. Nakai [22] and V.S. Guliyev [9] obtained sufficient conditions on
weights w; and ws ensuring the boundedness of T from MP“1(R") to MP«2(R").

For x € R™ and r > 0, let B(x,r) denote the open ball centered at x of radius r.

Let f € L°¢(R"). The maximal operator M and the Riesz potential I* are defined
by

Mf(z) = sup | B(a,t)| " / 1F()ldy,
t>0 B(z,t)

Io‘f(x)/Rf(y)dy O<a<n,

n |z =y’

where |B(z,t)| is the Lebesgue measure of the ball B(z,t).
The local Morrey-type spaces MP“1(R™) and the complementary local Morrey-
type spaces GM?;O}(R") were inten-sively studied during the last decades. In [9] lo-

cal ”complementary” generalized Morrey spaces GM?Z}(R"), the space of all functions
f € Ly(R"\B(zo,7)), r > 0 by the norm

i
p,w = Sup —— n To.T
I euz o =500 e

were introduced and studied.
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Note that the maximal operator, potential and related topics associated with the
Laplace-Bessel differential operator

A —iﬁ+§:ﬁa >0 >0
B_i:1 81’22 s z; axiv 4! yers Vk

have been investigated by many researchers, see B. Muckenhoupt and E. Stein [21], E.
Stein [25], 1. Kipriyanov [16], K. Trimeche [27], L. Lyakhov [18], K. Stempak [26], A.D.
Gadjiev and L.A. Aliev [8], V.S. Guliyev [10], [11], V.S. Guliyev and J.J. Hasanov [12],
J.J. Hasanov [14], R. Ayazoglu and J.J. Hasanov [3], C. Aykol and J.J. Hasanov [4], J.J.
Hasanov, R. Ayazoglu, S. Bayrakci [15], A. Serbetci, I. Ekincioglu [23], E.L. Shishkina
[24], L.R. Aliyeva, S. Esen Almali, Z.V. Safarov [2] and others.

In this paper we consider the generalized shift operator, generated by the Laplace-
Bessel differential operator Ap in terms of which the B-Riesz potential is investigated
in the local complementary generalized B-Morrey space.

2. Preliminaries

Let R}, be the part of the Euclidean space R" of points z = (z1,...,x5) defined by the
inequalities #1 > 0,...,25 > 0,1 <k <mn, (@) =" - ... 2", v = (7,.., ) Is a
multi-index consisting of fixed positive numbers.

In this paper we realize some estimations of the B-Riesz potential generated by the
generalized shift operator ([17]) of the form

Tf(a) = o [ L / " H @) — ") du(B),

where (z;,vyi)s, = (27 — 2w;y;c08f; —i—yf)%7 1 < ¢ < k (@)s =

k
((xlayl)ﬁm' QR (xkayk)ﬁk)7 dV (ﬂ) = H Sin%_l /B’L dﬂl . dﬁka 1 § k S n and
i=1

k
ko i+ 1 9k-1
Cop=m"3I"" (';') ||F<7 ; ) = WM ('; +1> w(2, k7).
i=1

Note that the generalized shift operator TV is closely related to the Ap Laplace-Bessel
differential operator ([16]). Furthermore, 7% generates the corresponding B-convolution

(feg)(z)= fw)TVg(x) (y') dy,

Ryt

for which the Young inequality

11 1
If@gle,., <Mfls,, lollz,,,, 1Spagsr<oo, —+o=C41

holds.
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Let Ly, (R} ;) be the space of measurable functions on R} | with finite norm

Wy = 1y ey ) = ( /.

k,+

1/p
|f(9€)|”($')7d$> , 1<p<oo.

For p = oo the space Lo (RZ ) is defined by means of the usual modification

1fllEe., = ess sup [f(2)]-
z€RY |

Definition 2. [10] Let 1 < p < o0, 0 < XA < Q. We denote by B-Morrey space
MP’A’“’(RZ#), associated with the Laplace-Bessel differential operator the set of locally
integrable functions f(z), x € Ry 1, with the finite norm

|flptrss = sup (M /| ] ]%)(y')wy)w.

t>0,m€]RZ’+

Consider the B-Riesz potential

Tand(@) = [ TIAN@I 2y 0<a <@

o

ok Then the operator I,  1is

Theorem 1. [13] Let 0 < a < Q, 1 < p < %; %
bounded from Ly (R} ) to Ly~ (R} ).

1
q

Let 1 < p < oo, w positive measurable function. The norm in the spaces Mp’“”"f(R’,;’ +)
defined by

Q

t P 1/p
- y P "y
e = s o ([ T v@wya)

the local ”complementary” generalized B-Morrey space G/\/li;ﬁ (RZ ) is defined by the

norm

tQ/ 1/p
flle, o,  =sup —— / TY[|f] 1P (2) (') dy .
Mo =250 s, o T POW)

A—

If w(t) = %, then MP@IY(RY ) = Ly (RE ) if w(t) =75, 0 < A < Q, then
MPCY(RE L) = MP’A’V(RZ&)'
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3. B-Riesz Potentials in the Spaces EM?E;W(RZ )

Theorem 2. Let0<a<Q,1<p<%,

1 1 _ o )
5= 1=06 If the integral

1
L
L e e 0

is convergent, then

~9 (" 94
oy fllL, @&y \B@OH < CL 7 /O $P N fllzy Ry \B(wo.s) @S (1)

for every f € L, (R} ,\E(0,t) and C does not depend on f,z¢ and t € (0,00).

Proof. We represent f as

f=h+l, LW =rWxey \Bon®) f209) = FW)XxE0H W)
So that
Har fllLg @ \e0.0) < Hanfill, @ \s0.0) + Moy follLg @ \mo0)-
Since f1 € Ly (R}, ), from Theorem 1 we have

||Iowf1‘

From the monotonicity of the norm [|f||L, .y ,\£(o,r) With respect to r we have

Lon®2 \EO,0) < Hanfille,,@p ) < ClAlL, @y ,) = ClfllL, ., @ B0

_o [t e,
1z, ey By < CEY /0 o f e,y BT
and then
A
Moy fillL, @y \E@) < CE P /0 s?' | fllz, @y \B(0,5)ds. (2)
Now we will show that I, - f2 is bounded for every z € Ry ,\E(0,2r). By = €
Ry \E(0,2r) and y € E(0,7), it follows that 7¥[z| > 1|z| > r, then we get
oo o) < [ T5@ 10l dy
E(0,t)
<crm @ [ @) d.
E(0,r)
For 8 > % — 1, we have

[ mis@ieyan= [ > gt [ @l =

Se 4 0
lyl<r =l
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=) [ S egante) [ Tl [ s =
0 0

k+l 1

6+1/ Zfzﬁgdo / ﬁds/ TS| f(2)[tQ P 1at <

k+’L 1

1/p

<C / Zf?&%do(f)/s"*%“ /Tt5|f(m)|th*1dt ds =
7y =1 0
st

S

1/p

= c/sp Lds / Z{gf’da /Tt€|f(x)|PtQ*1dt <
Sk4+ T S
1/p
SC/ Pl //T“E\f Y|P 1Z§2§7dtd0 ds =
1/p
™
20/55—1 / TV ()P () dy | ds <
0 s<lyl<r
r 9,
<C [l @ B
0
Therefore
Lanfal@)] < C / PN iy g B (w5 (3)
It remains to make use of (3) and obtain
~g [* 5.4
Hanfollz, @y \EBO8) < Ct P 5 112y B \B(zo,s))dS- (4)
From (2) and (4) we arrive at (1). <

Theorem 3. Let 0 < a < Q, 1 <p < &, % — % = %, the functions wi(r) and wa(r)
fulfill the condition

/0 wl(r)% < Ct™%wsy(t), (5)

Pw1,y
where C' does not depend on t. Then the operator I, ~ is bounded from GM{O}l (R% 1)
q w2,y

to M{O} (RZ7+)
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Proof. It suffices to prove the boundedness of the operator I, ., since M?*f(z) <

Cloqy|fl().
c p,wi,Y
Let f € Mgy (RE ). We have
.9
HIOL,'Yf” GM({]YOQ;QY’Y(R’]:,+) = i1>110) WHXRQ#\E(OJ)T IO‘v’Yf||Lq,w(Rz’)+)' (6)

We estimate ||xgr +\E(0,t)Ia,WfHLq,W(Rg .y in (6) by means of Theorem 2. We obtain

_e e
t o Td g/_l
R v ol ML (R
e b (r)
<C w1, dr.
< Hf”l?/\/ﬁ{’o}1 "(ry ) 50D W2(t)/0 R
It remains to make use of the condition (5). <
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