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Abstract. This paper presents an overview of methods for the analysis of data structured
in N multiblocks of variables partitioned in M multigroups of individuals. More specif-
ically, successive generalized co-inertia analysis (SGCIA) and its dual method, which
are two unifying approaches for multiblock data analysis and multigroup data analysis.
Examples are given to illustrate the use of the proposed methods.
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1. Introduction

The main purpose of this article is to generalize the multiblock data analysis methods and
the multigroup data analysis methods. A mutiblock is a partition of columns structured
in blocks. Each block is a data matrix whose variables are measured on the same number
of individuals. A mutigroup is a partition of rows structured in groups. Each group is a
data matrix whose variables are measured on different groups of individuals.

These two general classes of methods have two special cases. Canonical correlation
analysis [6] is the seminal paper for the first family and Tucker’s interbattery factor anal-
ysis [19] for the second one. When we consider a data set structured in blocks of variables,
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4 Co-inertia analysis of data structured in groups of individuals

the criterion of interbattery factor analysis has been extended to multiple co-inertia anal-
ysis [2]. However, the criterion of canonical correlation analysis has been extended to the
generalized canonical correlation analysis [1], [5], [7]. For the case of two data matri-
ces, interbattery factor analysis is an important case in point. An important difference
between (generalized) interbattery factor analysis and generalized canonical correlation
analysis is that the former does not only focus on optimally describing the relationship
between sets of variables, but in addition requires that the variance within sets of vari-
ables is explained well by the components used. Morever, methods of regularization of
generalized canonical correlation analysis [15]-[17] have been proposed. These methods
are a framework for modeling linear relationships between several blocks of variables
observed on the same set of individuals. Another computational method for measuring
the common structure between two data matrices can be found in [10]. In [10], They
maximize the following criterion

f(u, v) =

[

p
∑

h=1

cov2(Y v, xh)

][

q
∑

l=1

cov2(Xu, yl)

]

(1)

subject to the normalization constraints (2). This criterion is equivalent to maximize

f(u, v) = (u′Ku)(v′Hv), (2)

where K = VXY VY X and H = VY XVXY are two positive semidefinite symmetric matri-
ces.

Several generalizations of canonical correlation analysis and interbattery factor anal-
ysis have been proposed for handling situations with more than two sets of variables [1],
[2], [4], [5], [7], [10], [11], [15], [16].

In the case of the multigroup framework, when the same set of variables is observed
on different groups of individuals, the Partial Triadic Analysis (PTA) of [18] which is one
of the simplest analyses of the STATIS family and the multigroup analysis of [9] can be
seen as the principal component analysis (PCA) [12] of a series of PCAs.

To study the stability of relationships between several pairs of matrices, Simier and
others [14] have proposed the STATICO method. It is well known that the weighting
coefficients of the compromise may be contrary sign in some cases. For this reason,
alternatives have been proposed which maximize the sum of covariances and the sum
of squared covariances between the components, with orthonormality constraints on the
components. For instance, Kissita and others [8] have proposed CIAs3, which maximizes

f(u, v) =

M
∑

i=1

(u
′

Kiu)

M
∑

i=1

(v
′

Hiv) (3)

subject to the constraints ||u|| = ||v|| = 1, with Ki = VXiYi
VYiXi

and Hi = VYiXi
VXiYi

.
Maximizing (1) offers a method of analyzing relationships between two partitioned ma-
trices X = [X ′

1, · · · , X
′
M ]′ and Y = [Y.′1, · · · , Y

′
M ]′, centered column wise and measured

on p and q variables.
Eslami and others [3] proposed a approach multiblock/multigroup situation. But this

approach is a multiblock/multigroup PCA. The idea of having the SGCIA method is



R.O. Malouata, M. Koukouatikissa Diafouka, G.C. Louzayadio 5

to provide on the one hand multigroup operators which are symmetric and positive
semidefinite for investigating the relationships between pairs of multiblocks structured in
multigroups, on the other hand systems of the orthogonal vectors for the representation
of the groups of individuals and blocks of variables. When the data set is partitioned in
several multiblocks, we propose a dual method of SGCIA.

Finally, we will conclude this paper with a detailed analyses of a practical example
where many of the special cases are explored. This paper is organized as follows: In
section 2, we will propose the SGCIA method and its dual method. In section 3 and 4,
an overview of applications of SGCIA for several multiblock and multigroup data analysis
is given.

2. Methods

In this paper, we consider a data supermatrix X structured in multigroups (partition of
rows) or in multiblocks (partition of columns). Rows of X are related to individuals and
columns to variables.

2.1. Successive generalized co-inertia analysis
In the multiblock framework, we consider X = [X1, . . . , Xj , . . . , XN ] a column parti-

tion. Each n × pj data matrix Xj = [X ′
1j , . . . , X

′
ij , . . . , X

′
Mj ]

′ is called a multigroup. In
this subframework, the same set of variables is observed on different groups of individu-
als. Each ni×pj data submatrix Xij centered column wise is called a group. The number
of individuals of each group can differ from one group to another. Finally, X = [Xij ]i,j

is a supermatrix having n =
M
∑

i=1

ni rows and p =
N
∑

j=1

pj columns.

Definition 1. The successive generalized co-inertia analysis (SGCIA) consists of finding
components Xjuj, where uj are loading vectors, summarizing a community of structures
of the data matrices Xj related to each of the sets covariances. Thus, In this way SG-
CIA puts more emphasis on describing sets covariance than does multiblock/multigroup
PCA of [3]. SGCIA for multiblock and multigroup data analyses is based on a single
optimization problem. The core optimization problem considered in this paper is defined
as follows:

Maximise f(u1, · · · , uN) =

(

M
∑

i=1

u
′

1Ki1u1

)





N
∏

j=2

(

M
∑

i=1

u
′

jHijuj

)



 (4)

subject to the constraints ||uj || = 1, j = 1, . . . , N,

where Ki1 = VXi1Xi2VXi2Xi1 and Hij = VXijXij−1VXij−1Xij
are symmetric and positive

semidefinite matrices. Ki1 is a matrix which allows to investigate the relationships be-
tween variables of the data submatrices Xi1 and Xi2. Hij is a matrix which allows to
investigate the relationships between variables of the data submatrices Xij and Xij−1

and Xj and Xj−1.
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Definition 2. The second criterion (SGCIA) is formulated as follows:
Maximize

f(u1, · · · , uN ) =

(

M
∑

i=1

(u
′

1Q1Ki1Q1u1)

)

+





N
∏

j=2

(

M
∑

i=1

(u
′

jQjHijQjuj

)



 (5)

subject to the same normalization constraints of criterion (4).

Definitions 1 and 2 are equivalent to the optimum.

In what follows, we propose only the SGCIA3 solution, given that the SGCIA4 solu-
tion is identical to the optimum of the SGCIA3 solution. We call this SGCIA method.

To simplify the presentation, the metrics implicitly considered in individual spaces are
the identity metrics. However, other metrics could also be used, as is done in co-inertia
analysis.

The following Lagrangian function related to optimization problem (4) is considered:

L(u1, · · · , uN , α1, . . . , αN ) =

=

(

M
∑

i=1

u
′

1Ki1u1

)





N
∏

j=2

(

M
∑

i=1

u
′

jHijuj

)



+ α1(1− u
′

1u1) +

N
∑

j=2

αj(1− u
′

juj), (6)

where αj , j = 1, · · · , N , are the Lagrange multipliers.

The following proposition specifies the role of the vectors u1 and uj in the criterion
to be maximized.

Property 1. If we set ru1 =
M
∑

i=1

(u
′

1Ki1u1) and ruj
=

M
∑

i=1

(u
′

jHijuj) for all (j =

2, · · · , N), partial co-inertia axes u1 and uj for all (j = 2, · · · , N) from SGCIA ver-
ify the stationary equations

(

M
∑

i=1

Ki1

)

u1 = ru1u1, (7)

(

M
∑

i=1

Hij

)

uj = ruj
uj , (8)

α = f(u1, · · · , uN) =

N
∏

j=1

ruj
. (9)

u1 and uj are eigenvectors of the
M
∑

i=1

Ki1 and
M
∑

i=1

Hij matrices respectively, related to the

largest eigenvalues ru1 and ruj
.
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Proof. We may also consider the derivative L′. Canceling the derivatives of the La-
grangian function with respect to uj and αj yields the following stationary equations:

1

2

∂L

∂u1
=





N
∏

j=2

ruj





M
∑

i=1

Ki1u1 − α1u1 = 0,

1

2

∂L

∂uj

=





N
∏

h=1,h 6=j

ruh





M
∑

i=1

Hijuj − αjuj = 0, j = 2, · · · , N,

∂L

∂uj

= 1− u
′

juj = 0, j = 1, · · · , N.

By pre-multiplying relations (7) and (8) by u
′

1 and u
′

j respectively, and taking into account
equalities (9), we find relation (6):

α1 = α2 = · · · = αj = · · ·αN = α = f(u1, · · · , uN) =
N
∏

j=1

ruj
.

Taking into account relation (6) in (7) and (8), It yield the stationary equations (4)
and (5). ◭

Having determined the solutions of order 1, which we denote u1,1 and uj,1, we deter-
mine the solutions of order greater than 1.

The co-inertia axes u
(s)
j (respectively u(s) = [u

(s)′

1 | · · · |u
(s)′

j | · · · |u
(s)′

N ]
′

the block vector

of Rp) are orthornormal (respectively orthogonal). On the other hand, the c
(s)
Xij

= Xiju
(s)
j

components are not Di-orthogonal. To obtain this orthogonality property for the syn-

thetic components, we set X
(0)
ij = Xij , for all i = 1, · · · ,M and j = 1, · · · , N and

X
(s−1)
ij = P⊥

c
(s−1)
Xij

X
(s−2)
ij ,

with

P⊥

c
(s−1)
Xij

= Ini
− P

c
(s−1)
Xij

and P
c
(s−1)
Xij

=
c
(s−1)
Xij

c
(s−1)′

Xij
Di

‖c
(s−1)
Xij

‖2Di

the Di-orthogonal projector onto the subspace of c
(s−1)
Xij

= X
(s−2)
ij u

(s−1)
j . The following

proposition specifies the role of the vectors u
(s)
1 and u

(s)
j in the criterion to be maximized.

Property 2. At order s, the co-inertia axes u
(s)
1 and u

(s)
j (j = 2, · · · , N) verify the

stationary equations
(

M
∑

i=1

K
(s−1)
i1

)

u
(s)
1 = ru1,su

(s)
1 ,
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(

M
∑

i=1

H
(s−1)
ij

)

u
(s)
j = ruj,s

u
(s)
j , (10)

α = f(u
(s)
1 , · · · , u

(s)
N ) =

N
∏

j=1

r
u
(s)
j

,

where K
(s−1)
i1 = X

(s−1)′

i1 DiX
(s−1)
i2 X

(s−1)′

i2 DiX
(s−1)
i1 and

H
(s−1)
ij = X

(s−1)′

ij DiX
(s−1)
ij−1 X

(s−1)′

ij−1 DiX
(s−1)
ij .

Property 3. For s = 1, · · · ,min(pj) and j = 1, · · · , N , the co-inertia axes u
(s)
j are

orthogonal.

Proof. We only show the orthogonality of the u
(s)
j axes, since the orthogonality of the

u
(s)
1 axes can be demonstrated in the same way. Multiplying the left-hand side of relation

(10) by the transpose of Qju
(t)
j for all t = 1, · · · , s− 1, we obtain

r
u
(s)
j

u
(s)′

j u
(t)
j = u

(s)′

j

(

M
∑

i=1

X
(s−1)′

ij DiX
(s−1)
ij−1 X

(s−1)′

ij−1 DiX
(s−1)
ij

)

u
(t)
j = 0

because

X
(s−1)
ij u

(t)
j =

(

s−1
∏

d=t

P⊥

c
(d)
Xij

)

X
(t−1)
ij u

(t)
j =

= P⊥

c
(s−1)
Xij

P⊥

c
(s−2)
Xij

· · ·P⊥

c
(t+1)
Xij

P⊥

c
(t)
Xij

c
(t)
Xij

= 0

and P⊥

c
(t)
Xij

c
(t)
Xij

= 0, for all t = 1, · · · , s− 1, i = 1, · · · ,M and j = 1, · · · , N .

As ruj,s
6= 0, we obtain u

(s)′

j u
(t)
j = 0. ◭

The orthogonality of the components (c
(s)
Xij

)s for all i = 1, · · · ,M , j = 1, · · · , N and

s = 1, · · · ,min(pj) allows to study the internal structures of each of the matrices. If the

Xij groups are reduced, the coordinates of the variables in the plane given by c
(s)
Xij

and

c
(t)
Xij

are the correlations between the Xij variables and the c
(s)
Xij

and c
(t)
Xij

components.
These pictures of the variables allow to interpret the components of each Xij group. To
represent the variables in the Xi1 group, proceed in the same way as above. It is also
possible to use the additional elements technique to represent the variables in each of

the groups Xij by projecting the rows of the Hij matrices onto the co-inertia axes u
(s)
j

and u
(t)
j respectively. In the same way, we project the variables of the Ki1 matrices to

represent the variables of the Xi1 groups on the co-inertia axes u
(s)
1 and u

(t)
1 .

Taking into account the orthogonality of the co-inertia axes u
(s)
1 and u

(s)
j , we can

project the individuals of the groups Xi,1 and Xi,j for all j = 2, · · · , N respectively in
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the planes defined by (u
(s)
1 , u

(t)
1 ) and (u

(s)
j , u

(t)
j ). But the coordinates of these projections

are not exactly given by the components of the vectors c
(s)
Xi1

and c
(t)
Xi1

and/or c
(s)
Xij

and

c
(t)
Xij

due to the bias caused by deflations on the tables.

At order s (s = 1, · · · , r), the specific weights associated with the pairs of groups

Xij and Xik for all i = 1, · · · ,M and j, k = 1, · · · , N are respectively defined by ρ
(s)
Xij

=

var(Xiju
(s)
j ) and ρ

(s)
Xik

= var(Xiku
(s)
k ). These weights define the projected inertia of

the clouds of individuals associated with the tables Xij and Xik on the co-inertia axes
uj and uk respectively, r ≤ min(pj). These weights characterize the stability of each

group of variables. We associate with the groups Xij and Xik are the numbers ρ
(s)
Xijk

=

cor2(Xiju
(s)
j , Xiku

(s)
k ), which are the squares of the correlation coefficients. On the other

hand, these coefficients characterize the stability of the relationship between groups Xij

and Xik for all i = 1, · · · ,M for multigroups Xj and Xk with j 6= k.
Suppose outer vectors, for s ≥ 2, u1,s and uj,s have been constructed. We now

consider the different special cases which give this generalization and powerfulness of
the optimization problem (3) for multigroup and multigroup data analysis.

2.1.1. SGCIA is a PCA [12]
SGCIA is a PCA for covariance matrix with special structure. Let us consider Σ a

p×p block diagonal matrix whose principal diagonal can be expressed in matrices
M
∑

i=1

Ki1

and
M
∑

i=1

Hij . From the stationary equations (4) and (5), suppose Σ is the block diagonal

matrix

Σ =























M
∑

i=1

Ki1 0

M
∑

i=1

Hi2

. . .

0
M
∑

i=1

HiN























Setting us = [u′
1,s, . . . , u

′
j,s, . . . , u

′
N,s]

′ a block vector and Λ = diag(ruj,s
, j = 1, . . . , N)

eigenvalues diagonal matrix, we observe that

Σus = usΛ.

Since the sth principal component ξs = Xus =
N
∑

j=1

Xjuj,s is a linear combination of

the multigroup matrices Xj or the sum of the components ξj,s = Xjuj,s, the set of
principal components contains the linear combinations of the groups Xij or the sums of
the components ξij,s = Xijuj,s. This principal component explains a proportion

αs

ρ
where αs =

N
∏

j=1

ruj,s
and ρ =

min(pj)
∑

s=1

αs
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of the total population variation.

Special case. If M = N = 1, the super multigroup is reduced to a single group
X11 = X and the SGCIA is reduced to the analysis of the triplet (X, Ip, D).

2.1.2. SGCIA is a interbattery factor analysis [19]
Clearly, by setting M = 1 and N = 2 in the SGCIA criterion, we obtain the inter-

battery factor analysis. Since the function can be written

f(u1, u2) = (u′
1K11u1)(u

′
2H12u2).

When we have a table X11, the search for a component X11u1 synthesizing the system
of covariations of the variables x1

1l of a table X11n× p1 is done by principal component
analysis, using the criterion optimization problem:

f(u1) =

p1
∑

l=1

Cov2(X11u1, x
1
1l) = u′

1K11u1.

When we have two tables X11 and X12, the information on the score analogy between
X11 and X12 is contained in the variance-covariance matrix X ′

11DX12. The X11u1 and
X12u2 components synthesizing this information are obtained from the singular value
decomposition defined by:

X ′
11DX12 = U∆Ũ ′

with U p1 × r and Ũ p2 × r two matrices such that U ′U = UŨŨ ′ = In1 and ∆ r× r

a diagonal block matrix where ris the rank of the matrix X ′
11DX12.

The orthonormal base systems {u1s}s=1,...,r and {u2s}s=1,...,r being respectively

formed by the columns of U and Ũ , then the vectors u1s and u2s for s = 1 . . . , r which
verify the following relations

K11u1s = rus
u1s and H12u2s = rus

u2s

are solutions of the function

f(u1s, u2s) = (u′
1sK11u1s)(u

′
2sH12u2s),

where the positive value rus
= Cov(X11u1s, X12u2s) constitutes the stextith diagonal

of∆. The vectors u1s are singular to the left ofX
′
11DX12 and u2s are singular to the right.

2.1.3. SGCIA is a SCIA3 [8]
If M is arbitrary and N = 2, the super multigroup T = [Xij ] reduces to two multi-

groups and the SGCIA reduces to the SCIA3, confirming that the SGCIA is a general-
ization of the CIAs3 method proposed by [8]. Since the function can be written

f(u1, u2) =

M
∑

i=1

(u
′

1Ki1u1)

M
∑

i=1

(u
′

2Hi2u2)
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subject to the constraints ||u1|| = ||u2|| = 1, with Ki1 = VXi1Xi2VXi2Xi1 and Hi2 =
VXi2Xi1VXi1Xi2 .

By setting ru1 =
M
∑

i=1

(u
′

1Ki1u1) and ru2 =
M
∑

i=1

(u
′

2Hi2u2), we get α = ru1ru2 . Thus,

relations (4) and (5) yield the following stationary equations:
(

M
∑

i=1

Ki1

)

u1 = ru1u1,

(

M
∑

i=1

Hi2

)

u2 = ru2u2.

We obtain:

- u1 is the eigenvector of the matrix
M
∑

i=1

Ki1 related to the largest eigenvalue ru1 ,

- u2 is the eigenvector of the matrix
M
∑

i=1

Hi2 related to the largest eigenvalue ru2 .

2.1.4. SGCIA is a multiple co-inertia analysis (MCOIA) [2]
If M = 1 and N is arbitrary, the super multiblock T = [Xij ] becomes a N horizontal

matrices with general element the block X1j of dimension (n1, pj) for all j = 1, · · · , N .
The SGCIA method becomes a multiple co-inertia analysis proposed by [2] whose sta-
tionary equations are:

(K
(s−1)
11 )u

(s)
1 = ru1,su

(s)
1 ,

(H
(s−1)
1j )u

(s)
j = ruj,s

u
(s)
j .

2.1.5. SGCIA is a Concor method [10]
If, instead of N multigroups, we have N + 1 multigroups, of which the first X0

multigroup is the reference multigroup Y and the others form the super-multigroup T

made up of N multigroups, the SGCIA method adopts the approach of the Concor
analysis proposed by [10] and is equivalent to maximizing the function

f(v, u1, · · · , uN) =

(

M
∑

i=1

(v
′

KiY v)

)





N
∏

j=1

(

M
∑

i=1

(u
′

jHijuj

)





subject to the constraints u
′

juj = 1 for all j = 1, · · · , N and v
′

v = 1 with KiY =

Y
′

i DiXi1X
′

i1DiYi, Yi = Xi0 and v a vector of Rq.
This maximization problem leads to the order s to the stationary equations

M
∑

i=1

KiY v
(s) = rvsv

(s),

M
∑

i=1

Hiju
(s)
j = ruj,s

u
(s)
j .
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The result is the CONCOR analysis proposed by [10], which is an extension of MCOIA.

2.2. Dual Successive generalized co-inertia analysis
In the previous subsection we proposed SGCIA, in this subsection we will propose the

dual method of SGCIA. The Dual Successive generalized co-inertia analysis (DSGCIA)
is similar to SGCIA, but SGCIA method does not have the same solution.

When we have M multiblocks Xi (we cut the table T into rows), to study the internal
structure between these M multiblocks, we seek to define X

′

iDivi components, where vi
are Di-normed vectors for all i = 1, · · · ,M synthesizing a community of structures of
multiblocks Xi relative to each of the systems of internal proximities. The aim is to
simultaneously want the X

′

1jD1v1 components characterize the proximity systems of the

individuals in the X2j tables, and the X
′

2jD2v2 components characterize the proximity
systems of the individuals in the X1j tables.

Furthermore, it is the case that the components X
′

i−1jDi−1vi−1 characterize the sys-

tems of proximities of the individuals of the tables Xij , and that the components X
′

ijDivi
characterize the systems of proximities of the individuals of the tables Xi−1j for all
i = 2, · · · ,M and j = 1, · · · , N .

Definition 3. The dual SGCIA consists of searching for vectors vi of R
ni by maximizing

the function

f(v1, · · · , vM ) =





N
∑

j=1

(v
′

1D1L1jD1v1)









M
∏

i=2





N
∑

j=1

(v
′

iDiPijDivi







 (11)

subject to the constraints les contraintes de normalization

v
′

iDivi = 1, for all i = 1, · · · ,M, (12)

where L1j = X1jX
′

2jX2jX
′

1j denotes a symmetric positive semidefinite matrix of dimen-
sion (n1, n1) for all j = 1, · · · , N . These matrices are respectively used to describe the
proximities between individuals in the X1j and X2j blocks of the X1 and X2 multiblocks.

Pij = XijX
′

i−1jXi−1jX
′

ij denotes a symmetric positive semidefinite matrix (ni, ni) for
all i = 2, · · · ,M and j = 1, · · · , N .These matrices are also used to describe the prox-
imities between individuals in the blocks Xi−1j and Xij associated respectively with the
multiblocks Xi−1 and Xi. Xi = [Xi1| · · · |Xij | · · · |XiN ], the multiblocks extracted from T

of dimension (ni, p).

Maximization (11) subject to constraints (12) leads for all i = 2, · · · ,M to the sta-
tionary equations





N
∑

j=1

L1j



D1v1 = rv1v1,





N
∑

j=1

Pij



Divi = rvivi,
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β = f(v1, · · · , vM ) =

M
∏

i=1

rvi .

v1 and vi are respectively eigenvectors of the matrices
N
∑

j=1

L1jD1 and
N
∑

j=1

PijDi , associ-

ated with the eigenvalues rv1 and rvi .

Definition 4. The Dual SGCIA can also be obtained by maximizing the

f(v1, · · · , vM ) =





N
∑

j=1

(v
′

1D1L1jD1v1)



 +





M
∏

i=2





N
∑

j=1

(v
′

iDiPijDivi









subject to the constraints:

v
′

iDivi = 1, for all i = 1, · · · ,M.

The criteria defined in definitions 3 and 4 are equivalent to the optimum.
To find solutions of order greater than one, we proceed in the same way as for SGCIA.

The special cases of this method lead to well-known methods such as SGCIA.

3. Main Results

In this section we present two methods for analyzing two multigroups: SCIA3 and SGCIA.
The principle of each method is briefly explained, and the result obtained on the example
data set is detailed.

To demonstrate the greater suitability of the SGCIA, we reanalyze the datasets that
have been acquired by [13] and which serve as an illustration in SCIA3 [8].

Specifically, we reanalyze two data matrices: one data matrix X with 24 rows and 13
columns, containing the ephemeroptera species and one data matrix Y with 24 rows and
10 columns, containing the environmental variables.

The rows of both matrices correspond to 6 sampling stations ordered upstream-
downstream along a small stream, the Méaudret of France. These 6 stations are sampled
4 times, in Spring, Summer, Autumn and Winter.

The 24 × 13 data matrix X is partitioned in four 6 × 13 data matices Xi. The
13 columns of the species data table correspond to 13 Ephemeroptera species, which
are known to be highly sensitive to water pollution. These species are as follows:
Eda=Ephemera, Bsp=Baetis sp, Brh = Baetis rhodani, Bni = Baetis niger, Bpu =
baetis pumilus, Cen = centroptilum, Ecd = Ecdyonurus, Rhi = Rhihrogena, Hla =
Habrophlebialauta, Hab = Habroletoides modesta, Par = Paraletophlebia, Cae = Cae-
nis, Eig = Epheme - rella ignita.

In addition, 24 × 10 data matrix Y is partitioned in four 6 × 10 data matices Yi.
The 10 environmental variables are physico-chemical measures: Temp=water tempera-
ture, flow, pH, Cond=conductivity, Oxyg=oxygen, BDO5=biological oxygen demand,
Oxyd=oxidability, Ammo=ammonium, Nitr=nitrates and Phos=phosphates.
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Species are centered by season and environmental variables are centered and then
normalized globally. This global normalization allows intra-season variance to be taken
into account. Each of these tables corresponds to a season and a triplet (Xi, Ip, Di) for
the fauna and (Yi, Iq, Di) for the environment.

The problem is to investigate the stability relationships between Ephemeroptera
species distribution and the quality of water in the station typology.

3.1. Successive co-inertia analysis 3 (SCIA3)
We consider the orthogonal version of SCIA3 called SOCIA.
Table 1 contains the squared correlations between the partial linear combinations

of variables (species of fish) and environmental variables of order 1 and 2 for the SO-
CIA3 method. These squared correlations enable to describe the evolution of species-
environment relationships. Constancy of these squared coefficients of correlation enables
to conclude the stability of the relationship.

Table 1. Squared correlations between linear combinations of the variables in fish
abundance and environmental variables to order 1 and 2 for SOCIA3

Seasons
Methods Spring Summer Autumn Winter
SOCIA3 0.371 0.877 0.935 0.329

0.436 0.715 0.817 0.404

It emerges from Table 1, a same evolution of species-environmemt relationships for
Summer and Automn concerning SOCIA3 method (Confer the graph of Figure 1).

Fig. 1. Position of the seasons on the first two axes of squared correlations
between partial synthetic components species-environment for SOCIA3
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This observation does not find oneself in Winter and Spring which differ too much
from other seasons on this method. The last situation confirms good results from other
methods of co-inertia analysis cited above.

Table 2 contains the percentages of projected inertia of each table on the first two
axes.

Table 2. Percentages of projected inertia (specific weights) of each season on the first
two axes

Seasons
Methods Spring Summer Autumn Winter

11.100 14.292 43.947 30.658
SOCIA3 (X) 9.521 32.679 47.328 10.470

6.725 31.022 57.926 4.324
SOCIA3 (Y) 22.657 47.301 18.949 11.091

On the first two axes according to SOCIA3 method for the first multi-table, Au-
tumn has projected inertia percentages are highest. Regarding the second multi-table
corresponding to the environmental variables, it is rather than on the first axis of high
percentages of projected inertia for Autumn found. But on the second axis, it is the Sum-
mer that has the largest percentage. We find perfectly the same results than previous
methods.

In the first two axes of SOCIA3, we show the stations (Fig2X1) and species (Fig2X2).
The SOCIA3 method determines simultaneously two sets of orthogonal axes at the in-
dividuals level and variables level. It follows from these graphics, any season, a general
organization finds again more or less at stations and species. It notes an overall size
effect at axis 1 regarding the species. The axis 1 opposes on the one hand station S6
and station S2 on the other hand for all seasons. We can find for all seasons more or
less in the station S6 species Baetis sp and Baetis Rhodani. In the Spring, station S6 is
characterized by high temperatures and flow (Fig3Y1 and Fig3Y2).



16 Co-inertia analysis of data structured in groups of individuals

Fig. 2. Position of the stations (Fig2X1) and the species (Fig2X2) per
season on the first two axes for multigroup X of SOCIA3
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Fig. 3. Representation of the stations (Fig3Y1) and the environmental
variables (Fig3Y2) per season on the first two axes for multigroup Y of

SOCIA3

Station S2 is characterized by the phosphates and ammonium in Autumn. Near the
center marks, we find the rare species that are not taken into account by the SOCIA3.
Axis 2 opposes generally one hand station S1 and stations S4 and S6 other hand.

In contrast to the SOCIA3 method the positions of the environmental variables are
generally those of the previous methods mentioned above.
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3.2. Successive generalized co-inertia analysis (SGCIA)
In this subsection we apply the SGCIA method to the ecological dataset. For SGCIA

this is the case where M = 4 and N = 2.

Table 3. Squared correlations between linear combinations of the variables in fish
abundance and environmental variables to order 1 and 2 for SGCIA

Seasons
Methods Spring Summer Autumn Winter
SGCIA 0.375 0.878 0.934 0.330

0.431 0.716 0.817 0.403

Tables 3 and 4 provide the same results as Tables 1 and 2. Autumn has a higher
squared correlation than Summer. On the first axis, this variation is 0.056 and on the
second axis, 0.101. With the SOCIA3 method, this variation is 0.058 on the first axis
and 0.102 on the second axis.

Table 4. Percentages of projected inertia (specific weights) of each season on the first
two axes

Seasons
Methods Spring Summer Autumn Winter

11.100 14.292 43.947 30.658
SGCIA (X) 9.521 32.679 47.328 10.470

6.725 31.022 57.926 4.324
SGCIA (Y ) 22.657 47.301 18.949 11.091

The same results apply to SOCIA3, where the squared correlation is much higher in
Autumn.

Table 4 gives a complete overview of the variability at each date for the two matrices
X and Y .

Thus, for the first X matrix, on the first axis, we find the percentages of explained
inertia 11.1%, 14.29%, 43.95% and 30.66% and for the second Y matrix we have: 6.72%,
31.02%, 57.93% and 4.32%. We can see that mesological variability and faunistical di-
versity are low in Winter and spring, while Autumn has the highest percentage. The two
matrices X and Y have similar results, i.e., there is a common structure between the two
matrices.
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Fig. 4. Position of the seasons on the first two axes of squared correlations
between partial synthetic components species-environment for SGCIA
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Fig. 5. Position of the stations (Fig5A) and the species (Fig5B) per season
on the first two axes for multigroup X of SGCIA

Figure 5 (fig5A) shows the position of the stations on the first two co-inertia axes
defined by the SGCIA. As with SOCIA3, we note an overall size effect on axis 1 (fig5B).
Axis 2 is an axis of opposition between stations S2 and S6.
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Fig. 6. Representation of the stations (Fig6C) and the environmental
variables (Fig6D) per season on the first two axes for multigroup Y of

SGCIA

Figure 6 (fig6C) shows the position of stations on the first two axes. As with the
SOCIA3 method, a rise in Spring flows is observed at stations s4 and s5. For the SGCIA
and SOCIA3 analyses, axis 1 is a pollution gradient axis and axis 2 a restoration gradient
axis.
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4. Conclusion

The generalizations developed allow us to find several methods for analyzing multivariate
data.

The methods consist in searching for table components and co-inertia axes that are
common to each multibloc or multigroup, enabling projected inertias and correlation
coefficients to be calculated between table pairs.
The advantage of these methods is their simplicity. Determining the solution requires a
simple diagonalization of the matrices.

The two methods presented here uncover the same features in the example data set.
This is a small data set, but with strong structure, and strong structures often are clear
with any method. However, the two methods used to analyze even a data set with clear
structure can have advantages and drawbacks.
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