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1. Introduction and Problem Statement

It is known that (see [1, pp. 153-154]) the internal and external electrical boundary-value
problem is reduced to a system of integral equations depending on the potential vector
with a weak singularity

(Af) (x) = 2

∫
Ω

Φk (x, y) [n (x) , [n (y) , f (y)]] dΩy, x = (x1, x2, x3) ∈ Ω, (1)

where Ω ⊂ R3 is the Lyapunov surface with the exponent 0 < α ≤ 1; n (x) =
(n1 (x) , n2 (x) , n3 (x)) is the outer unit normal at the point x ∈ Ω; the notation [a, b]
means the vector product of vectors a and b; f (x) = (f1 (x) , f2 (x) , f3 (x)) is the vector
function continuous on the surface Ω,

Φk (x, y) =
exp (ik |x− y|)

4π |x− y|
, x, y ∈ R3, x ̸= y,

fundamental solution of the Helmholtz equation ∆u+k2u = 0, ∆ is the Laplace operator,
and k is a wave number with Imk ≥ 0.

Note that some properties of the operator generated by the derivative of the loga-
rithmic potential of the double layer were studied in [6]; some properties of the operator
generated by the derivative of the acoustic potential of a simple layer were studied in [5];
and some properties of the operator generated by the normal derivative of the acoustic
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potential of a double layer in generalized Hölder spaces were studied in [4]. It should be
noted that in [1, pp. 73, 154] it is shown that if Ω is a closed and twice continuously
differentiable surface in R3, then the operator A works boundedly from the space of
continuous functions onto the Hölder space and is compact in the space of continuous
functions, as well as in the Hölder space. Here we prove the validity of the Zygmund type
estimate and study some properties of the operator generated by the vector potential (1)
in generalized Hölder spaces.

2. Estimate of A. Zygmund Type Estimate for the
Operator Generated by the Vector Potential (1)

Let us introduce the modulus of continuity of a vector functionf ∈ C (Ω):

ω̄f (δ) = max
|x−y|≤δ
x, y∈Ω

|f (x)− f (y)| , δ > 0,

where

|f (x)− f (y)| =
√
(f1 (x)− f1 (y))

2
+ (f2 (x)− f2 (y))

2
+ (f3 (x)− f3 (y))

2
,

and C (Ω) denotes the space of all continuous functions on the surface Ω with the norm
∥f∥∞ = max

x∈Ω
|f (x) |. Since the function ω̄f (δ) does not have the property of semi-

additivity, the function ”corrected” by S.B. Stechkin is chosen as the main characteristic

ωf (δ) = δ sup
τ≥δ

ω̄f (τ)

τ
, δ > 0.

It is known that the function ωf (δ) has the following properties: ωf (δ) is non-negative,
semi-additive, and non-decreasing; the function ωf (δ) /δ is not increasing; lim

δ→0
ωf (δ) = 0

and ωf (Cδ) ≤ (1 + C)ωf (δ), where C = const > 0.
Let us denote by d > 0 the radius of the standard sphere for Ω (see [7, p. 400]) and let

Ωε (x) = {y ∈ Ω : |x− y| < ε}, where x ∈ Ω and ε > 0. It is known that for each x ∈ Ω
the set Ωd (x) is projected uniquely onto the set Πd(x) lying in the tangent plane Γ (x)
to Ω at the point x. On the piece Ωd(x) we choose a local rectangular coordinate system
(u, v, w), with the origin at the point x, where the w-axis is directed along the normal
n (x), and the u- and v-axes lie in the tangent plane Γ (x). Then in these coordinates
the neighborhood Ωd(x) can be defined by the equation w = ψ (u, v) , (u, v) ∈ Πd(x),

where ψ ∈ H1,α (Πd (x)) and ψ (0, 0) = 0, ∂ψ(0, 0)∂ u = 0, ∂ψ(0, 0)∂ v = 0. Here H1,α (Πd (x))
denotes the linear space of all continuously differentiable functions ψ on Πd (x), whose
gradψ satisfies the Holder condition with the exponent 0 < α ≤ 1, i.e.,

|gradψ (u1, v1)− grad ψ (u2, v2) | ≤

≤Mψ

(√
(u1 − u2)

2
+ (v1 − v2)

2

)α
, ∀ (u1, v1) , (u2, v2) ∈ Πd(x),
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where Mψ is a positive constant depending on ψ, and not from (u1, v1) or (u2, v2).

Theorem 1. Let Ω ⊂ R3 be the Lyapunov surface with the exponent 0 < α ≤ 1 and
vector functionf (x) = (f1 (x) , f2 (x) , f3 (x)) be continuous on the surface Ω. Then for
any points x′, x′′ ∈ Ω, the following estimates are valid

|(Af) (x′)− (Af) (x′′)| ≤Mf

hα +

h∫
0

ωf (r) dr + h

d∫
h

ωf (r)

r
dr

 for 0 < α < 1,

|(Af) (x′)− (Af) (x′′)| ≤Mf

h |lnh|+ h∫
0

ωf (r) dr + h

d∫
h

ωf (r)

r
dr

 for α = 1,

where h = |x′ − x′′ | and Mf is a positive constant depending only on Ω, k and f.

Proof. Let’s take any points x′, x′′ ∈ Ω such that the value h is less than d/2. It is not
difficult to see that

(Af) (x) = e1 ((A11f) (x) + (A12f) (x))+

+e2 ((A21f) (x) + (A22f) (x)) + e3 ((A31f) (x) + (A32f) (x)) ,

where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1),

(A11f) (x) = 2n2 (x)

∫
Ω

Φk (x, y) (n1 (y) f2 (y)− n2 (y) f1 (y)) dΩy,

(A12f) (x) = 2n3 (x)

∫
Ω

Φk (x, y) (n1 (y) f3 (y)− n3 (y) f1 (y)) dΩy,

(A21f) (x) = 2n3 (x)

∫
Ω

Φk (x, y) (n2 (y) f3 (y)− n3 (y) f2 (y)) dΩy,

(A22f) (x) = 2n1 (x)

∫
Ω

Φk (x, y) (n2 (y) f1 (y)− n1 (y) f2 (y)) dΩy,

(A31f) (x) = 2n1 (x)

∫
Ω

Φk (x, y) (n3 (y) f1 (y)− n1 (y) f3 (y)) dΩy,

and

(A32f) (x) = 2n2 (x)

∫
Ω

Φk (x, y) (n3 (y) f2 (y)− n2 (y) f3 (y)) dΩy.

It is not difficult to show that the following representation is correct:

(A11f) (x
′)− (A11f) (x

′′) =
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= 2 (n2 (x
′)− n2 (x

′′))

∫
Ω\Ωd(x′)

Φk (x
′, y) (n1 (y) f2 (y)− n2 (y) f1 (y)) dΩy+

+2n2 (x
′′)

∫
Ω\Ωd(x′)

(Φk (x
′, y)− Φk (x

′′, y)) (n1 (y) f2 (y)− n2 (y) f1 (y)) dΩy+

+2n2 (x
′)

∫
Ωh/2(x′)

∪
Ωh/2(x′′)

Φk (x
′, y) ((n1 (y) f2 (y)− n2 (y) f1 (y))−

− (n1 (x
′) f2 (x

′)− n2 (x
′) f1 (x

′))) dΩy−

−2n2 (x
′′)

∫
Ωh/2(x′)

∪
Ωh/2(x′′)

Φk (x
′′, y) ((n1 (y) f2 (y)− n2 (y) f1 (y))−

− (n1 (x
′′) f2 (x

′′)− n2 (x
′′) f1 (x

′′))) dΩy+

+2

∫
Ωd(x′)\(Ωh/2(x′)

∪
Ωh/2(x′′))

((n1 (y) f2 (y)− n2 (y) f1 (y))− (n1 (x
′) f2 (x

′)− n2 (x
′) f1 (x

′)))×

× (n2 (x
′)Φk (x

′, y)− n2 (x
′′)Φk (x

′′, y)) dΩy+

+2 ((n1 (x
′) f2 (x

′)− n2 (x
′) f1 (x

′))− (n1 (x
′′) f2 (x

′′)− n2 (x
′′) f1 (x

′′)))×

×n2 (x′′)
∫

Ωh/2(x′)
∪
Ωh/2(x′′)

Φk (x
′′, y) dΩy+

+2 (n1 (x
′) f2 (x

′)− n2 (x
′) f1 (x

′))

∫
Ωd(x′)

(n2 (x
′)Φk (x

′, y)− n2 (x
′′)Φk (x

′′, y)) dΩy. (2)

We denote the terms on the right-hand side of equality (2) by K1, K2, K3, K4, K5,
K6, and K7, respectively.

According to the definition of a Lyapunov surface with the exponent 0 < α ≤ 1,

|n (x)− n (y)| ≤M1 |x− y|α , ∀x, y ∈ Ω. (3)

Then, considering that

P (x) =

∫
Ω\Ωd(x′)

Φk (x, y) (n1 (y) f2 (y)− n2 (y) f1 (y)) dΩy, x ∈ Ω,

is a proper integral, we have:
|K1| ≤M ∥f∥∞ hα.

It is obvious that the function P (x) is continuously differentiable on the surface Ω.
Then

|K2| = 2 |n2 (x′′) (P (x′)− P (x′′))| ≤M ∥f∥∞ h.

1 Here and below, M will denote positive constants that are distinct in different inequalities.
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Let us represent the expression K3 in the form K3 = 2n2 (x
′) (K ′

3 +K ′′
3 ), where

K ′
3 =

∫
Ωh/2(x′)

Φk (x
′, y) ((n1 (y) f2 (y)− n2 (y) f1 (y))− (n1 (x

′) f2 (x
′)− n2 (x

′) f1 (x
′))) dΩy

and

K ′′
3 =

∫
Ωh/2(x′′)

Φk (x
′, y) ((n1 (y) f2 (y)− n2 (y) f1 (y))− (n1 (x

′) f2 (x
′)− n2 (x

′) f1 (x
′))) dΩy.

Since

(n1 (y) f2 (y)− n2 (y) f1 (y))− (n1 (x
′) f2 (x

′)− n2 (x
′) f1 (x

′)) =

= (n1 (y)− n1 (x
′)) f2 (y) + (f2 (y)− f2 (x

′))n1 (x
′)+

+ (n2 (x
′)− n2 (y)) f1 (x

′) + (f1 (x
′)− f1 (y))n2 (y) , (4)

then taking into account inequality (3) and the continuity of the vector function f (x)
on the surface Ω, we obtain that for any y ∈ Ωh/2 (x

′) the following inequality is valid

|(n1 (y) f2 (y)− n2 (y) f1 (y))− (n1 (x
′) f2 (x

′)− n2 (x
′) f1 (x

′))| ≤

≤M
(
∥f∥∞ |y − x′|α + ωf (|y − x′|)

)
.

Therefore, using the formula for reducing a surface integral to a double integral (see [2,
p. 276]) and moving to the polar coordinate system, we find:

|K ′
3| ≤M

∫
Ωh/2(x′)

∥f∥∞ |y − x′|α + ωf (|y − x′|)
|y − x′|

dΩy =

=M

∫
Πh/2(x′)

∥f∥∞
(√
u2 + v2

)α
+ ωf

(√
u2 + v2

)
√
u2 + v2

×

×

√
1 +

(
∂ψ (u, v)

∂u

)2

+

(
∂ψ (u, v)

∂v

)2

dudv ≤

≤M

∫∫
u2+v2≤(h/2)2

∥f∥∞
(√
u2 + v2

)α
+ ωf

(√
u2 + v2

)
√
u2 + v2

dudv =

=M

2π∫
0

h/2∫
0

∥f∥∞ rα + ωf (r)

r
rdrdτ ≤M

∥f∥∞ h1+α +

h∫
0

ωf (r) dr

 .

Moreover, taking into account the expansion (4) and the inequality

h/2 ≤ |y − x′| ≤ 3h/2, y ∈ Ωh/2 (x
′′) ,
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we obtain:

|K ′′
3 | ≤M

∫
Ωh/2(x′′)

∥f∥∞ |y − x′|α + ωf (|y − x′|)
|y − x′|

dΩy ≤

≤
M ((3h/2)

α ∥f∥∞ + ωf (3h/2))

h/2

∫
Ωh/2(x′′)

dΩy ≤M
(
∥f∥∞ h1+α + ωf (h)h

)
.

Since,

h∫
0

ωf (r) dr =

h∫
0

ωf (r)

r
rdr ≥ ωf (h)

h

h∫
0

rdr =
ωf (h)

h

h2

2
=

1

2
ωf (h)h,

we get that

|K ′′
3 | ≤M

∥f∥∞ h1+α +

h∫
0

ωf (r) dr

 .

Summing up the obtained estimates for the expressions K ′
3 and K ′′

3 , we obtain the
estimates:

|K3| ≤M

∥f∥∞ h1+α +

h∫
0

ωf (r) dr

 . (5)

Proceeding in exactly the same way as in the proof of inequality (5), we obtain the
validity of the estimate

|K4| ≤M

∥f∥∞ h1+α +

h∫
0

ωf (r) dr

 .

Now let us evaluate the expression K5. Taking into account the inequalities

|x′′ − y| ≥ 1

2
|x′ − x′′| , y ∈ Ωd (x

′) \
(
Ωh/2 (x

′) ∪Ωh/2 (x′′)
)
,

and

|x′ − y| ≥ 1

2
|x′ − x′′| , y ∈ Ωd (x

′) \
(
Ωh/2 (x

′) ∪Ωh/2 (x′′)
)
,

we obtain the validity of the following inequalities:

|x′ − y| ≤ |x′ − x′′|+ |x′′ − y| ≤ 3 |x′′ − y| , y ∈ Ωd (x
′) \
(
Ωh/2 (x

′) ∪Ωh/2 (x′′)
)
,

and
|x′′ − y| ≤ 3 |x′ − y| , y ∈ Ωd (x

′) \
(
Ωh/2 (x

′) ∪Ωh/2 (x′′)
)
.

Then for any point y ∈ Ωd (x
′) \
(
Ωh/2 (x

′) ∪Ωh/2 (x′′)
)
, we have:

|n2 (x′)Φk (x′, y)− n2 (x
′′)Φk (x

′′, y)| =
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= |(n2 (x′)− n2 (x
′′))Φk (x

′, y) + (Φk (x
′, y)− Φk (x

′′, y))n2 (x
′′)| ≤

≤M

(
|x′ − x′′|α

|x′ − y|
+

|x′ − x′′|+ |x′ − y| |x′ − x′′|
|x′ − y|2

)
≤M

(
hα

|x′ − y|
+

h

|x′ − y|2

)
. (6)

As a result, taking into account the expansion (4) and the formula for reducing a surface
integral to a double integral, we obtain:

|K5| ≤M

∫
Ωd(x′)\Ωh/2(x′)

(
∥f∥∞ |y − x′|α + ωf (|y − x′|)

)( hα

|x′ − y|
+

h

|x′ − y|2

)
dΩy =

=M

∥f∥∞ hα
∫

Ωd(x′)\Ωh/2(x′)

dΩy

|x′ − y|1−α
+ ∥f∥∞ h

∫
Ωd(x′)\Ωh/2(x′)

dΩy

|x′ − y|2−α
+

+hα
∫

Ωd(x′)\Ωh/2(x′)

ωf (|y − x′|)
|x′ − y|

dΩy + h

∫
Ωd(x′)\Ωh/2(x′)

ωf (|y − x′|)
|x′ − y|2

dΩy

 ≤

≤M

∥f∥∞ hα + h

d∫
h

ωf (r)

r
dr

 .

Substituting y = x′′ into expansion (4), we find:

|(n1 (x′) f2 (x′)− n2 (x
′) f1 (x

′))− (n1 (x
′′) f2 (x

′′)− n2 (x
′′) f1 (x

′′))| ≤

≤M (∥f∥∞ hα + ωf (h)) .

Then, taking into account the inequality

h/2 ≤ |y − x′′| ≤ 3h/2, y ∈ Ωh/2 (x
′) ,

and using the formula for reducing a surface integral to a double integral, we obtain the
following estimate for the expression K6:

|K6| ≤M (∥f∥∞ hα + ωf (h))

 ∫
Ωh/2(x′)

dΩy
|y − x′′|

+

∫
Ωh/2(x′′)

dΩy
|y − x′′|

 ≤

≤M (∥f∥∞ hα + ωf (h))

 2

h

∫
Ωh/2(x′)

dΩy +

∫
Ωh/2(x′′)

dΩy
|y − x′′|

 ≤

≤M
(
∥f∥∞ h1+α + ωf (h)h

)
≤M

∥f∥∞ h1+α +

h∫
0

ωf (r) dr

 .
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From inequality (6), we obtain

|K7| ≤M ∥f∥∞
∫

Ωd(x′)

(
hα

|x′ − y|
+

h

|x′ − y|2

)
dΩy ≤M ∥f∥∞ (hα + h |lnh|) .

As a result, summing up the obtained estimates for the expressions K1, K2, K3, K4, K5,
K6 and K7, we find:

|(A11f) (x
′)− (A11f) (x

′′)| ≤Mf

hα + h |lnh|+
h∫

0

ωf (r) dr + h

d∫
h

ωf (r)

r
dr

 .

As you can see, if 0 < α < 1, then

|(A11f) (x
′)− (A11f) (x

′′)| ≤Mf

hα +

h∫
0

ωf (r) dr + h

d∫
h

ωf (r)

r
dr

 ,

and if 0 < α < 1, then

|(A11f) (x
′)− (A11f) (x

′′)| ≤Mf

h |lnh|+ h∫
0

ωf (r) dr + h

d∫
h

ωf (r)

r
dr

 .

It is easy to show that similar estimates are also valid for the expressions (A12f) (x),
(A21f) (x), (A22f) (x), (A31f) (x), and (A32f) (x). This completes the proof of the the-
orem. ◀

Theorem 2. Let Ω ⊂ R3 be the Lyapunov surface with the exponent 0 < α ≤ 1 and
the vector function f (x) = (f1 (x) , f2 (x) , f3 (x)) be continuous on the surface Ω. Then
Af ∈ C (Ω) and

ωAf (h) ≤Mf

hα +

h∫
0

ωf (r) dr + h

diamΩ∫
h

ωf (r)

r
dr

 for 0 < α < 1,

ωAf (h) ≤Mf

h |lnh|+ h∫
0

ωf (r) dr + h

diam Ω∫
h

ωf (r)

r
dr

 for α = 1,

where h ∈ (0, diamΩ] and Mf is a positive constant depending only on Ω,k, and f.

Proof. The continuity of the function (Af) (x) on Ω follows directly from Theorem 1.
Let

Z0 (h) =


hα +

h∫
0

ωf (r) dr + h
diamΩ∫
h

ωf (r)
r dr for 0 < α < 1,

h |lnh|+
h∫
0

ωf (r) dr + h
diamΩ∫
h

ωf (r)
r dr for α = 1.
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Applying L’Hôpital’s rule, we obtain

lim
h→0

h

diamΩ∫
h

ωf (r)

r
dr = lim

h→0

diamΩ∫
h

ωf (r)
r dr

1
h

= lim
h→0

−ωf (h)
h

− 1
h2

= lim
h→0

hωf (h) = 0,

which means that lim
h→0

Z0 (h) = 0.

Since the derivative of the function Z0 (h) is non-negative, i.e., the function Z0 (h)
does not decrease, then from Theorem 1 we obtain:

ω̄Af (h) = max
|x′−x′′|≤h
x′,x′′∈Ω

|(Af) (x′)− (Af) (x′′)| ≤

≤Mf max
|x′−x′′|≤h
x′,x′′∈Ω

Z0 ( |x′ − x′′|) =MfZ0 (h) , h ∈ (0, d/2] .

Further, taking into account that the derivative of the function Z0 (h) /h is non-positive,
i.e., the function Z0 (h) /h does not increase, we have:

ωAf (h) = h sup
τ≥h

ω̄Af (τ)

τ
≤ h sup

τ≥h

MfZ0 (τ)

τ
= h

MfZ0 (h)

h
=MfZ0 (h) , h ∈ (0, d/2] .

Obviously, this estimate is valid for all h ∈ (0, diamΩ]. The theorem has been proven.
◀

3. Some Properties of the Operator Generated by the
Vector Potential (1)

We introduce the following class of functions defined on (0, diamΩ]:

J (Ω) =

{
φ : φ ↑, lim

h→0
φ (h) = 0, φ (h) /h ↓

}
,

and let’s consider the function

Z (h, φ) =


hα +

h∫
0

φ (r) dr + h
diamΩ∫
h

φ(r)
r dr for 0 < α < 1,

h |lnh|+
h∫
0

φ (r) dr + h
diamΩ∫
h

φ(r)
r dr for α = 1,

where the sign ↑ means non-decreasing functions, and the sign ↓ means non-increasing
functions. Where it will not cause misunderstanding, we will sometimes write Z (h) and
Z (φ) instead of Z (h, φ). In the proof of Theorem 2, it is shown thatZ ∈ J (Ω).
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Let φ ∈ J (Ω). By H (φ) we denote the linear space of all vector functions f defined
on the surface Ω and satisfying the condition

|f (x)− f (y)| ≤Mfφ (|x− y|) , x, y ∈ Ω,

where Mf is a positive constant depending on f , not on the point x or y. As can be seen,
if f ∈ H (φ), then the function f is uniformly continuous on Ω. Moreover, it is known
that (see [3, p. 60]) the space H (φ) is a Banach space with the norm

∥f∥H(φ) = ∥f∥∞ + sup
x,y∈Ω
x ̸=y

|f (x)− f (y)|
φ (|x− y|)

.

The next theorem follows from Theorem 2.

Theorem 3. Let φ ∈ J (Ω). Then the operator A acts boundedly from space H (φ) onto
space H (Z (φ)).

Let φ ∈ J (Ω) and lim
h→0

Z(h,φ)
φ(h) = 0. It is known that (see [3, p. 70]) the space H (Z (φ))

is compactly embedded in the space H (φ). Then the following theorem is true.

Theorem 4. Let φ ∈ J (Ω) and Z (h, φ) = o (φ (h)) , h → 0. Then the operator
A : H (φ) → H (φ) is compact.

Let us denote by Hβ the Hölder space with the exponent 0 < β ≤ 1, i.e., the space
Hβ is the space H (φ) at φ (h) = hβ . It is obvious that if f ∈ Hβ , then

Z0 (h) =

{
hα for 0 < α < 1,
h |lnh| for α = 1.

Then we obtain the following corollary from Theorems 3 and 4.

Corollary. The operator A acts boundedly from the space Hβ onto the space Hα and is
compact in the space Hβ for 0 < β < α.

It should be pointed out that, in particular, if α = 1, then from Corollary we obtain
the result of the work [1, pp. 73, 154] for the compactness of the operator A in the space
Hβ .
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