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Abstract. In this paper, we introduce the concepts of rough projective representations
of rough groups and discuss their relations with rough 2-cocycle. In particular, we deduce
that any rough projective representation associated with a rough multiplier is equivalent
to a rough representation if and only if a rough multiplier is a rough coboundary.
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1. Introduction

In 1982, Z. Pawlak introduced the concept of rough set [10] to analyze and to model
vague and uncertain data. More precisely, technics from the rough set theory are used to
describe a set of objects to which values are assigned, to find dependency between the
attributes, to identify the most significant ones and to reduce the superfluous ones. The
notion of rough set appears to be powerful with an important applications in quantum
mechanics, software engineering, computer systems, decision analysis, electrical engineer-
ing, finance, chemistry, computer engineering, economics, neurology, medicine, statistics,
etc [9], [14]. The notion of rough set has been later extended to the group theory setting
[2], [7].

Besides, the notion of projective representation was initiated by I. Schur since 1904
[11], [12], [13]. The theory of projective representations involves homomorphisms into
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projective linear groups. Some interesting references on the subject are [6], [8]. In 2000,
B. Bagchi and G. Misra established that there is a natural correspondence between the
projective representations of homology group and a class of usual representations of its
universal cover [1]. In [3], C. Cheng developed a character theory for projective repre-
sentations of finite groups. He determined the number of distinct irreducible projective
representations (up to isomorphism) of a finite group with a given associated Schur mul-
tiplier and derived properties on the degrees of these projective representations.

The main purpose of this work is to bring together rough groups and projective
representations. More precisely, we introduce projective representations of rough groups
and investigate some of their main properties.

The rest of the paper is organized as follows. Section 2. collects some definitions and
results that we may needed. Section 3. states the mains results.

2. Preliminaries

In this section, we give some well-known definitions.

Definition 1. [2] Let U be a non-empty set (called the universe). Let R be an equivalence
relation on U . The pair (U,R) is called an approximation space.

Let (U,R) be an approximation space. For x ∈ U , the equivalence class of x is denoted
by [x]. For X ⊂ U , set

X = {x ∈ U : [x] ∩X 6= ∅} and X = {x ∈ U : [x] ⊂ X}.

The sets X and X are called the upper approximation and lower approximation of X in
(U,R) respectively. We have X ⊂ X ⊂ X.

Example 1. Let us consider the non-empty set U = {0, 1, 2, ..., 50}. We define the
relation R on U such that xRy if x − y = 5k, k ∈ Z. It is an equivalence relation on U .
From this equivalence relation, we have five equivalence classes, namely:
E0 = 0 = {0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50};
E1 = 1 = {1, 6, 11, 16, 21, 26, 31, 36, 41, 46};
E2 = 2 = {2, 7, 12, 17, 22, 27, 32, 37, 42, 47};
E3 = 3 = {3, 8, 13, 18, 23, 28, 33, 38, 43, 48};
E4 = 4 = {4, 9, 14, 19, 24, 29, 34, 39, 44, 49}.
In other words, U/R = {E0, E1, E2, E3, E4}. Since U 6= ∅ and R is an equivalence relation
on U , then (U,R) is a space d ’approximation. We consider a subset X of U given by
X = {10, 11, 12, 13, 14}. We obtain the upper and lower approximations of X, as follows
X = E0 ∪ E1 ∪ E2 ∪ E3 ∪ E4 = U and X = ∅.

Assume that U is endowed with a binary operation U ×U −→ U . The product of two
elements x and y is denoted by xy. The inverse of x (if it exists) is denoted by x−1.

Definition 2. [2] Let (U,R) be an approximation space. Assume that there is a binary
operation on U . A subset G of U is called a rough group if the following properties hold:
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1. ∀ x, y ∈ G, xy ∈ G,
2. ∀ x, y, z ∈ G, (xy)z = x(yz),
3. ∃ e ∈ G, ∀x ∈ G, ex = xe = x, ( e is called a rough identity element of G).
4. ∀ x ∈ G, ∃ y ∈ G, xy = yx = e ( y is called the rough inverse of x and denoted x−1).

Definition 3. [2] A non-empty subset H of rough group G is called a rough subgroup of
G if the two conditions are satisfied:

1. ∀x, y ∈ H, xy ∈ H,
2. ∀x ∈ H, x−1 ∈ H.

There is only one guaranteed trivial rough subgroup of rough group G, that is G
itself. A necessary and sufficient condition for the set {e} to be a trivial rough subgroup
of the rough group G is that e ∈ G.

Example 2. Consider the approximation space (Q8, R) where Q8 = {±1,±i,±j,±k}
is a group of quaternions. Let ∗ be the multiplicative law of quaternions.
Let R be the equivalence relation on Q8 such that Q8/R = {{±1}, {±i}, {±j,±k}}.
Let G = {±i,−1}. Then, we have G = {±i,±1} and G = {±i}. According to the
Definition 2, the following conditions are verified:

1. ∀x, y ∈ G, x ∗ y ∈ G,
2. the associativity property of the ∗ law is verified,
3. 1 ∗ (±i) = (±i) ∗ 1 = (±i) and 1 ∗ (−1) = (−1) ∗ 1 = −1 then 1 is the rough identity

element of G,
4. (−i)−1 = i ∈ G and (−1)−1 = −1 ∈ G.

Then, G is a rough group.

Definition 4. [7] Let (U1, R1) and (U2, R2) be two approximation spaces with binary
operations on U1 and U2. Suppose that G1 ⊂ U1, G2 ⊂ U2 are rough groups. If the
mapping φ : G1 → G2 satisfies φ(xy) = φ(x)φ(y) for all x, y ∈ G1, then φ is called a
rough homomorphism.

Let F be a field of scalars with identity element denoted by 1. Let us denote by F ∗

the multiplicative group of non-zero elements of F .

Definition 5. [5] A map α : G×G → F ∗ is called a rough multiplier or a rough 2-cocycle
of G over F ∗ if ∀x, y, z ∈ G,

1. α(x, y)α(xy, z) = α(x, yz)α(y, z),
2. α(x, e) = α(e, x) = 1.

The set of rough multipliers or rough 2-cocycles of G over F ∗ is denoted by Z2
r (G,F ∗).

Definition 6. [4] A rough representation of G on E is a homomorphism σ : x 7−→ σ(x)
from G into GL(E), that is,

∀x, y ∈ G, σ(xy) = σ(x)σ(y).
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Definition 7. [5] Let f : G → F ∗ be a map such that f(e) = 1. A map ν : G×G → F ∗

defined by
ν(x, y) = f(x)f(y)f(xy)−1, ∀x, y ∈ G.

is called a rough coboundary

3. Main Results

Let E be a vector space over the field F . Denote by GL(E) the set of invertible linear
operators on E with identity operator denoted by IE .

The set F ∗IE = {λIE , λ 6= 0, λ ∈ F} is a normal subgroup of GL(E). The quotient
set PGL(E) = GL(E)/F ∗IE is the projective general linear group. Let G be a rough
group.

Definition 8. A mapping π : G → GL(E) is called a rough projective representation of
G over F if there exists a mapping α : G×G → F ∗ such that the following two properties
hold :

(i) ∀x, y ∈ G, π(x)π(y) = α(x, y)π(xy),
(ii) π(e) = IE ,

where α is called a Schur multiplier.

Example 3. We consider the set C4 = {1, a, b, c} provided with the multiplication law
defined by the following Cayley table:

↷ 1 a b c
1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1

Let R be the equivalence relation canonically associated with Ui, i ∈ {1, 2} on C4

such that C4/R = {U1, U2} where U1 = {1, a}, U2 = {b, c}.
Let G = {a, b}. Then, G = U1 ∪ U2 = C4 and G = ∅. One may check that the

conditions of Definition 2 are satisfied. Therefore, G is a rough group.
Denote by M2(C) the space of 2 × 2 matrices with complex entries. Let us consider

the map π : G = C4 −→ M2(C) defined by

π(1) =

(
1 0
0 1

)
, π(a) =

(
0 1
1 0

)
, π(b) =

(
0 −i
i 0

)
, π(c) =

(
1 0
0 −1

)
,

and put α(1, x) = α(x, 1) = α(x, x) = 1, x ∈ G,
α(a, b) = α(b, c) = α(c, a) = i,
α(a, c) = α(b, a) = α(c, b) = −i.

Finally, it is straightforward to verify that α(x, y)π(xy) = π(x)π(y) for x, y ∈ G.
Therefore, the map π : G −→ M2(C) is a rough projective representation of G.
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Definition 9. Let E1 and E2 be vector spaces over F . Two rough projective repre-
sentations π1 : G → GL(E1) and π2 : G → GL(E2) are said to be rough projective
equivalent if there exists a map µ : G → F ∗ with µ(e) = 1 and a vector space isomor-
phism ϕ : E1 → E2 such that π2(x) = µ(x)ϕ ◦ π1(x) ◦ ϕ−1 for all x ∈ G.

Proposition. If π : G → GL(E) is a rough projective representation of G associated
with α, then α is a rough multiplier of G.

Proof. Since π : G → GL(E) is a rough projective representation of G associated with
α, then for x, y, z ∈ G, we have

π((xy)z) = π(x(yz))

⇒ α(xy, z)π(xy)π(z) = α(x, yz)π(x)π(yz)

⇒ α(xy, z)α(x, y)π(x)π(y)π(z) = α(x, yz)α(x, y)π(x)π(y)π(z)

⇒ α(x, yz)α(y, z) = α(x, y)α(xy, z).

In addition, π(e) = IE and for all x ∈ G, π(x) = π(xe) = α(x, e)π(x)π(e) =
α(x, e)π(x).

That means, α(x, e)IE = π(x)π(x)−1 = IE . Then, α(x, e) = 1. Similarly, we can prove
that α(e, x) = 1. We deduce that α(x, e) = α(e, x) = 1. Hence, α is a rough multiplier of
G. ◀

Theorem 1. If π : G → GL(E) is a rough projective representation of G and
σ : GL(E) → PGL(E) is the natural homomorphism, then σ ◦ π : G → PGL(E) is a
rough homomorphism. Conversely, if h : G → PGL(E) is a rough homomorphism such
that for any x ∈ G, π(x) ∈ GL(E) is an element of the coset h(x), then π : G → GL(E)
with π(e) = IE, is a rough projective representation of G.

Proof. Let σ : GL(E) → PGL(E) defined by σ(h) = F ∗h be the natural homomorphism
of GL(E) onto PGL(E). Let x, y ∈ G. Since π is rough projective representation, then
we have

σ ◦ π(x)σ ◦ π(y) = σ(π(x)π(y)) = F ∗π(x)π(y) = F ∗α(x, y)π(xy) =

= F ∗π(xy) = σ(π(xy)) = σ ◦ π(xy).

Hence, σ ◦ π : G → PGL(E) is a rough homomorphism.
Conversely, let us define π : G → GL(E) such that for each x ∈ G, π(x) is a fixed ele-

ment of the coset h(x). Then, there exists a canonical projection φ : GL(E) → PGL(E)
defined by Y 7→ Y F ∗IE such that φ ◦ π(x) = h(x). For x, y ∈ G, we have

φ(π(xy)) = h(xy) = h(x)h(y) = φ(π(x))φ(π(x)).

On the one hand, we have
φ(π(xy)) = π(xy)F ∗IE (1)

and the other hand,
φ(π(x))φ(π(x)) = π(x)π(y)F ∗IE . (2)
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We deduce from the equations (1) and (2) that there exists an element β ∈ K∗ such that
π(x)π(y) = βIEπ(x)π(y). From there, we have π(x)π(y) = βπ(xy).

Set α(x, y) := β ∈ K∗ such that π(x)π(y) = βπ(xy). We obtain an application α :
G×G → K∗ such that α(x, y)π(xy) = π(x)π(y) and π(e) = IE . We conclude that π : G →
GL(E) is a rough projective representation of G. ◀

Theorem 2. Let E1 and E2 be two vector spaces, π1 : G → GL(E1) and π2 : G →
GL(E2) be two rough projective representations of G associated with α1 and α2 respec-
tively. If there exists a map µ : G → F ∗ with µ(e) = 1 and a vector space isomorphism
ϕ : E1 → E2 for which

∀ x ∈ G, π2(x) = µ(x)ϕπ1(x)ϕ
−1, (3)

then α2 = να1, where ν is a rough 2-cocycle i.e ν(x, y) = µ(x)µ(y)µ(xy)−1, for all
x, y ∈ G.

Proof. Let x, y ∈ G. Since π1 and π2 are rough projective representations of G on E1

and E2 respectively, then we have

α2(x, y)π2(xy) = π2(x)π2(y) = (µ(x)ϕπ1(x)ϕ
−1)(µ(y)ϕπ1(y)ϕ

−1)

(by applying equation (3) to π2(x) andπ2(y))

= µ(x)µ(y)ϕπ1(x)ϕ
−1ϕπ1(y)ϕ

−1

= µ(x)µ(y)ϕπ1(x)π1(y)ϕ
−1

= ν(x, y)µ(xy)ϕα1(x, y)π1(xy)ϕ
−1

= ν(x, y)α1(x, y)µ(x, y)ϕπ1(xy)ϕ
−1

= ν(x, y)α1(x, y)π2(xy) ( as α2(x, y)π2(xy) = π2(x)π2(y)).

Hence, α2(x, y) = ν(x, y)α1(x, y). ◀

Theorem 3. Let α ∈ Z2(G,F ∗). Any rough projective representation associated with α
is equivalent to a rough representation if and only if α is a rough coboundary.

Proof. Suppose that the rough projective representation π associated with α is equivalent
to a rough representation σ. Then, there exists an isomorphism ϕ : E1 → E2 and a map
µ : G → F ∗ with µ(e) = 1 such that π(x) = µ(x)ϕσ(x)ϕ−1, ∀x ∈ G. Since π is a
rough projective representation associated with α, i.e α(x, y)π(xy) = π(x)π(y), for all
x, y ∈ G. Now, we have

α(x, y)µ(xy)ϕσ(xy)ϕ−1 = (µ(x)ϕσ(x)ϕ−1)(µ(y)ϕσ(y)ϕ−1)

= µ(x)µ(y)ϕσ(x)σ(y)ϕ−1

= µ(x)µ(y)ϕσ(xy)ϕ−1.

Hence, α(x, y)µ(xy) = µ(x)µ(y), since ϕσ(xy)ϕ−1 6= 0 (because ϕ 6= 0 and σ(x) ∈
GL(E)). We obtain, α(x, y)µ(xy) = µ(x)µ(y) ⇒ α(x, y) = µ(x)µ(y)µ(xy)−1.

Hence, α is a rough coboundary.
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Conversely, α is assumed to be a rough coboundary. Then, there is a map µ : G → F ∗

such that

α(x, y) = µ(x)µ(y)µ(xy)−1, ∀ (x, y) ∈ G
2
. (4)

Since, π be rough projective representation associated with α. We have

π(x)π(y) = α(x, y)π(xy). (5)

By combining equations (4) and (5), we have,

π(x)π(y) = µ(x)µ(y)µ(xy)−1π(xy),

(µ(x)−1π(x))(µ(y)−1π(y)) = µ(xy)−1π(xy).

Let us take σ : G → GL(E) defined by σ(x) = µ(x)−1π(x). According to equation (5),
it is clear that σ(xy) = σ(x)σ(y), ∀x, y ∈ G and σ(e) = µ(e)−1π(e) = IE . Hence, σ
is a rough representation. Now, we have, ∀x ∈ G, σ(x) = µ(x)−1π(x). This implies
π(x) = µ(x)σ(x) and π(x) ◦ IE = µ(x)IE ◦ σ(x).

Let us take ϕ = IE . Then, ϕ is an isomorphism. Hence, σ is a rough representation
(and it is equivalent to a π). ◀

4. Conclusion

The rough projective representation theory concerns both the rough group algebraic
structure and the notion of projective representation. From the two concepts combined,
we shown that the Schur multiplier is rough 2-cocycle and we established that any rough
projective representation associated with a rough multiplier is equivalent to a rough
representation if and only if a rough multiplier is a rough coboundary.

In the future, we plan to investigate the relationship between the set of rough projec-
tive representations and a family of modules associated to the multiplier. We also intend
to scrutnize the rough supra-topological groups notion.

References

1. Bagchi B., Misra G. A note on the multipliers and projective representations of semi-
simple Lie groups. Sankhya: The Indian Journal of Statistics, Ser. A, 2000, 62 (3), pp.
425-432.
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