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Abstract. In the paper, we propose a method for jointly solving problems of parametric
identification of a mathematical model’s parameters and searching for the optimal mode
of a dynamic object. As a result of this joint process, we obtain a suboptimal solution
to the problem of controlling a dynamic object in the vicinity of the optimal mode. We
present computation formulas and algorithms for implementing the proposed approach,
as well as the results of computer-based experiments.
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1. Introduction

Effective control of technological processes and technical objects depends to a large extent
on the quality of mathematical models that describe these processes. To study technolog-
ical processes and control them, the statistical modelling apparatus is widely used, which
has proven itself well provided that the drift of mathematical models is sufficiently small.
In the case of complex, essentially nonlinear, dynamic processes, it is necessary to solve
the problem of selecting an adequate mathematical model. Since a model that is suffi-
ciently adequate on average for the entire range of permissible process parameters is not
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always sufficiently satisfactory for any selected local area, it is proposed to use parametric
identification of the mathematical model of the process with its sequential refinement,
which is carried out when optimizing process regimes. Thus, for decision-making systems
on controlling dynamic processes, including the stages of parametric identification of a
mathematical model and optimization of regimes, we propose an approach in which these
two stages are carried out jointly (alternately). The result of this joint process is obtain-
ing a “locally optimal” model in the vicinity of an optimal regime. This paper derives
calculation formulas and an algorithm for implementing the proposed approach.

The main advantage of the proposed approach is that the adopted solution is optimal
for the mathematical model built taking into account the observations of the information
model under consideration, which are closest to the optimal solution, i.e., the mathemat-
ical model of the object can be considered locally optimal with respect to the decision
made. In contrast to the classical two-stage approach to decision making, the proposed
approach requires a larger amount of computations due to the need to carry out paramet-
ric identification of the model at each iteration of the optimization process. We describe
two variants of the decision-making procedure, which are iterative processes that combine
optimization of control parameters with redefinition of the parameters of the mathemati-
cal model. The first option is that at each iteration of optimization of control parameters
and identification of the model parameters, we completely cut off non-local observable
information. The second option involves using the entire set of observable data, but each
observation receives a weight depending on the distance of this observation from the
computed current optimum point obtained for the model built in the previous step.

The results of numerical experiments confirm the effectiveness of using the approach
proposed in the work to solve the problems. It is also necessary to take into account
that the optimal controls obtained during the solution may differ significantly from the
controls obtained using the classical sequential two-stage approach to parametric identi-
fication and optimization of regimes.

2. Problem Statement

Let the current state x(t) ∈ Rn of a controllable technological process or a dynamic object
be determined by the initial state x0 ∈ Rn, the vector of nonadjustable (uncontrollable)
parameters v ∈ V ⊆ Rm with values set at the beginning of the process, and the vector
of adjustable (controllable) parameters u ∈ U ⊆ Rr with values assigned over the entire
process period t ∈ [0, T ], subject to minimization of a given functional, which determines
the criterion for optimal process control. Let us assume that the process is described by
an initial-value problem with respect to some autonomous system of nonlinear differential
equations of the form

˙̃x(t) = f̃ (x̃(t), u, v, p) , t ∈ [0, T ]

x̃(0) = x̃0 ∈ X0

(1)

where X0 is the set of possible initial states of the process; x̃(t) = x̃ (t; x̃0, u, v) the
function that defines the process state under given initial conditions x̃0, values of the
nonadjustable parameters v ∈ V determined at the beginning of its course, and assigned
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(selected) values of adjustable parameters u ∈ U ; p ∈ P ⊆ Rl the vector of parameters
of the mathematical model, the values of which belong to the set of permissible values
of the parameters of the mathematical model of the process, P ; U the set of permissible
values of control parameters; V the set of possible values of nonadjustable parameters.

Let the functional

J (u; x̃0, v, p) =

∫ T

0

f0 (x̃(t), u, v) dt+ Φ (x̃(T ), u, v) → min
u∈U

(2)

determine the quality of the selected values of the vector of control parameters u de-
pending on the specified initial state x̃0 and the values of the vector of nonadjustable
parameters v. Here f0(·) and Φ(·) are given functions continuously differentiable with
respect to the their first two arguments.

When designing and developing control systems for real technological processes and
technical objects, the vector function f̃ , which determines the dynamics of the process,
is usually not specified, or only the class of functions is specified up to parameters that
require estimating values. The problem of reconstructing the function f̃(·) belongs to
the stage of mathematical modelling and for its implementation it is necessary to have
the results of observations of the process. This stage consists of two sub-stages. At the
first sub-stage (called “structural identification”), one defines a class of functions that
depends on the parameters p, the values of which are determined at the second sub-stage
(called “parametric identification”) [4].

We assume that the first sub-stage of process modelling – the problem of structural
identification – has been already resolved, for example, by means of some a priori qual-
itative information about the nature of the process, i.e., the process, instead of (1), is
described by the following system of differential equations:

ẋ(t) = f (x(t), u, v, p) , t ∈ [0, T ], (3)

where f(·) is an n-dimensional vector function specified up to parameters p, continuously
differentiable with respect to its arguments, which most often differs from the function
f̃(·) that actually describes the process; p the vector of parameters of the mathematical
model of the process, the values of which need to be determined at the parametric
identification sub-stage.

For parametric identification, it is necessary to conduct observations of the state of
the technological process, which can be of a different nature [1]. For example, for given
values of nonadjustable and controllable parameters vi ∈ V and ui ∈ U , i = 1, 2, . . . , N ,
respectively, observations of the process state can be conducted at given moments of time
ti,j ∈ [0, T ],

x̂ij = x̂i
(
ti,j ;u

i, vi
)
, ti,j ∈ [0, T ], j = 0, 1, . . . ,Mi, i = 1, 2, . . . , N. (4)

or only at the initial and final moments of time, ti,0 = 0 and ti,Mi
= T :

x̂i0 = x̂i
(
0;ui, vi

)
, x̂iT = x̂i

(
T ;ui, vi

)
, i = 1, 2, . . . , N, (5)
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where N is the number of observations of separately occurring processes; Mi the number
of observations of the state during each process; for each of the observations, a posi-
tive weight coefficient γi ∈ [0, 1], i = 1, 2, . . . , N , is specified, the values of which are
determined by the degree of reliability and accuracy of the results of observations.

Observations can also be conducted at specified time intervals:

x̂ij(t) = x̂i
(
t;ui, vi

)
, t ∈ [ti,j−1, ti,j ] , j = 0, 1, . . . ,Mi, i = 1, 2, . . . , N, (6)

where [ti,j−1, ti,j ] ⊂ [0, T ] are the specified intervals; Mi is the number of observable
intervals for each observation.

The problem of identifying the model parameters p (parametric identification prob-
lem) using, for example, the least squares criterion, depending on the type of observations
leads to minimization of the functional [6]

S1(p) =

N∑
i=1

Mi∑
j=1

γi
∥∥xi (ti,j ;ui, vi, p)− x̂ij

∥∥2
Rn + ϵ ∥p∥2Rl (7)

in the case of observations of type (4); for observations of type (5), instead of functional
(7), we consider the following functional:

S2(p) =

N∑
i=1

γi
∥∥xi (T ;ui, vi, p)− x̂iT

∥∥2
Rn + ϵ ∥p∥2Rl . (8)

For observations of type (6), the following functional is taken:

S3(p) =

N∑
i=1

Mi∑
j=1

γi

∫ ti,j

ti,j−1

∥∥xi (t;ui, vi, p)− x̂ij(t)
∥∥2
Rn dt+ ϵ ∥p∥2Rl , (9)

where xi
(
t;ui, vi, p

)
is the solution of the system of differential equations (3) under initial

conditions

xi
(
0;ui, vi, p

)
= x̂i0 (10)

(i.e., for ti,0 = 0) and for given values of the parameters ui, vi, and p; ϵ the regularization
parameter of the minimizable functional [8].

Thus, the problem of creating a mathematical software for controlling the given tech-
nological process consists of two stages. At the first stage, we solve the problem of para-
metric identification of the mathematical model of the process, described by (3) and (10),
using the corresponding observations (4), (5), or (6) by minimizing one of the functionals
(7), (8), or (9); at the second stage, we solve the problem (2) and (3) on choosing an
optimal mode u = u (t;x0, v) = const of the process under given values of the initial
state x0 and the values of the vector of nonadjustable parameters v.
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3. Numerical Solution of Parametric Identification
and Control Problems

It is clear that the formulation of problems of parametric identification (3)-(9) and of op-
timal control (2) and (3) belong to the same class of parametric optimal control problems;
in order to solve them, any known approach can be used; in particular, we can apply first
order numerical optimization methods. For example, in the case of a simple structure
of the admissible regions of parameters, P and U (i.e., multidimensional parallelepiped,
sphere, etc.), the gradient projection method can be used [3], [9]. To solve the parametric
identification problem (3)-(9), we build an iterative process using the following formulas:

pk+1 = ProjP
(
pk − αk ×∇S

(
pk
))
, k = 0, 1, 2, . . . , (11)

∇S
(
pk
)
= 2ϵ pk −

N∑
i=1

∫ T

0

∂f
(
xi(t), ui, vi, pk

)
∂p

· ψi(t)dt, (12)

where ProjP (·) is the projection operator onto the admissible domain P, which has a
simple form for a domain of simple structure; xi(t) = xi

(
t; x̂i0, u

i, vi
)
the solution of the

initial-value problem (3) and (5); αk the one-dimensional minimization step; ψi(t) the
solution of an adjoint problem, the form of which depends on the observations conducted
and the selected objective functional. For example, for observations (4) and (5) and
functional (7), the adjoint system is as follows:

ψ̇i(t) = −
[
∂f(xi(t),ui,vi,p)

∂x

]∗
ψi(t)+

+2γi
Mi∑
j=1

[
xi
(
t;ui, vi, p

)
− x̂ij

]
· δ (t− ti,j), t ∈ (0, T ],

(13)

ψi(T ) = 0, i = 1, 2, . . . , N, (14)

where δ (t− ti,j) is the generalized Dirac function; ∗ the matrix transpose sign. For
observations of type (6) and functional (9), the adjoint system takes the form

ψ̇i(t) = −
[
∂f(xi(t),ui,vi,p)

∂x

]∗
ψi(t)+

+2
N∑
j=1

χi
j(t)

[
xi
(
t;ui, vi, p

)
− x̂i(t)

]
, t ∈ (0, T ],

(15)

with initial condition (14), where χi
j(t) is the Heaviside type function defined in our case

as follows:

χi
j(t) =


0, t /∈

N⋃
j=1

[ti,j−1, ti,j ]
⋂
[t, T ],

1, t ∈
N⋃
j=1

[ti,j−1, ti,j ]
⋂
[t, T ].

(16)
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The above formulas can be easily derived using the method of variations of optimizable
parameters or the corresponding well-known formulas [3], [5], [9], taking into account
that problems (3)-(9) are a special case of the general formulation of the optimal control
problem.

After solving the parametric identification problem and determining the parameters
p with a given accuracy, and consequently, constructing a mathematical model of the
process, to solve the optimal control problem for a given initial condition x0 and the
value of the nonadjustable parameter v, first-order numerical optimization methods can
be used [3], [9]:

uk+1 = ProjU
(
uk − αk ×∇J

(
uk
))
, k = 0, 1, 2, . . . , (17)

∇J
(
uk
)
=

T∫
0

{
−∂f0(xk(t),uk,v,p)

∂u +

[
∂f(xk(t),uk,v,p)

∂u

]∗
ξk(t)

}
dt+

∂Φ(xk(T ),uk,v)
∂u . (18)

Here ProjU ( ) is the projection operator onto the admissible domain U; xk(t) =
x
(
t;x0, uk, v, p

)
the solution of the initial-value problem with respect to (3); αk the step

in the direction of the anti-gradient of the functional in the space of control parameters;
ξk(t) = ξ

(
t;x0, uk, v

)
the solution of the following adjoint problem:

ξ̇k(t) =
∂f0

(
xk(t), uk, v, p

)
∂x

−

[
∂f
(
xk(t), uk, v, p

)
∂x

]∗
ξk(t), t ∈ (0, T ], (19)

ξk(T ) = −
∂Φ
(
xk(T ), uk, v

)
∂x

. (20)

The disadvantage of the described two-stage approach to decision-making on process
control, in which at the first stage a mathematical model is built using all the available
observations, is the following. The right-hand sides of differential equations (1), describing
the process under consideration, as a rule, are not known exactly, and when mathemati-
cally modelling the process, i.e., when choosing the function f(·) in (3), simplified (linear,
quadratic) functions are used first of all. Therefore, after parametric identification of the
mathematical model, the calculated trajectory values will not coincide with the real tra-
jectory. The greater the spread of observable admissible values of the initial conditions
x̂i0, control parameters ui, and nonadjustable parameters vi, the more the calculated
values of the mathematical model of the process will differ from the real trajectory.

To develop the results obtained in [2], [7] regarding static objects, it is proposed to
combine the stages of mathematical modelling, more precisely, the stages of paramet-
ric identification of parameters p and of optimization of control parameters u, but only
after the values of the initial conditions x0 and nonadjustable parameters v are spec-
ified. Parametric identification of the model should be carried out after each iteration
(17) on optimization of the control parameters u. It is very important that all available
observations used for the parametric identification problem be assigned some weights
ρi
(
x̂i0, v

i, ui;x0, v, uk
)
, i = 1, 2, . . . , N , which are inversely proportional to the distance

between the observable parameters x̂i0, v
i, ui of the process, and the given values of the

initial condition x0, the nonadjustable parameter v, and the current value of the itera-
tive process (17) on optimization of the control parameter uk. In this case, for example,
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functional (7) used in the parametric identification problem, at the kth iteration of the
process of optimizing the control parameter uk will have the form

Sk
1

(
p;x0, v, uk

)
=

N∑
i=1

ρi
(
x0, v, uk

) Mi∑
j=1

γi
∥∥xi (ti,j ;ui, vi, p)− x̂ij

∥∥2
Rn + ϵ ∥p∥2Rl , (21)

and, when Mi = 1 and ti,Mi = T , the functional (8) takes the form

Sk
2

(
p;x0, v, uk

)
=

N∑
i=1

ρi
(
x0, v, uk

)
γi
∥∥xi (T ;ui, vi, p)− x̂iT

∥∥2
Rn + ϵ ∥p∥2Rl . (22)

Functional (9) will change similarly. As weight functions, one can use, for example, a
function of the form

ρi
(
x0, v, uk

)
= ρix

(
x0
)
+ ρiv (v) + ρiu

(
uk
)
,

ρix
(
x0
)
= e−θ1∥x̂i

0−x0∥; ρiv (v) = e−θ2∥vi−v∥; ρiu
(
uk
)
= e−θ3∥ui−uk∥, (23)

where θ1, θ2, and θ3 are some predefined constant coefficients. It is evident that the values
ρix
(
x0
)
, ρiv (v), and ρ

i
u

(
uk
)
will not change during the decision-making process (both for

the parametric identification and the optimal control problems). They are defined as
soon as the values of the initial condition x0 and the nonadjustable parameters v become
known. In the iterative optimization process (17), the parameters of the mathematical
model p will change due to changes in ρiu

(
uk
)
, i = 1, 2, . . . , N , k = 1, 2, 3, . . ..

Remark 1. Instead of (23), one can also use the product of the weight functions:

ρi
(
x̂i0, v

i, ui;x0, v, uk
)
= ρix

(
x0
)
× ρiv (v)× ρiu

(
uk
)

or any other function with the property of monotonic decrease depending on the value
of the modules of the difference of the arguments

∥∥x̂i0 − x0
∥∥, ∥∥vi − v

∥∥, and ∥∥ui − uk
∥∥.

Remark 2. Another implementation of the proposed approach to combining the solution
of the problems of parametric identification and optimal control can be cutting off from
the set of observable values of the process parameters those observations whose values are
away from the current vector (x0, v, uk) at a distance greater than some predefined quan-
tity. In this case, the weight functions ρi(·) are not used; at each optimization iteration
(17), parametric identification is carried out using only a truncated set of observations
[2].

In the proposed approach to mathematical modelling and decision-making on process
control, the problems of parametric identification and of optimal control are replaced by
a single task, which can be written in the form

J
(
u;x0, v, argmin

p∈P
S
(
p;x0, v, u

))
→ min

u∈U
(24)

or
J
(
u;x0, v, p∗(u)

)
→ min

u∈U
, p∗(u) = argmin

p∈P
S
(
p;x0, v, u

)
(25)
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taking into account differential equations (3). The values (x0, v) in (24) and (25) are
given, the functionals J (·) and S(·) are defined by formulas of the kind (2) and (21)
or (22). An optimal pair (u∗, p∗(u)), which is a solution to the problem (24) or (25),
is characterized by the fact that during the parametric identification of the model (3),
observations (4)-(6) conducted in closer neighbourhoods of the optimal solution u∗ have
greater weight, i.e., the mathematical model is “locally optimal” in the neighbourhood
of the parameter values (u∗, p∗(u)).

Thus, to solve the stated problem, one can use the following algorithm.

Step 1. For given values of the initial state x0 and nonadjustable parameter v, for
all available observations (4), (5) or (6), we calculate the values of the weight coefficients
ρix
(
x0
)
and ρiv (v), whereas the values of the weights ρiu

(
uk
)
, i = 1, 2, . . . , N , we take

equal to one.

Step 2. Solving the problem (11)-(16), we carry out the parametric identification
and determine the vector of model parameters p∗0.

Step 3. Using the iterative method (17)-(20), we solve the optimal control problem
(2) and (3) on determining the vector u∗0.

Step 4. We perform one step of the iterative method (17)-(20), determine a new vector
of parameters u∗1, and solve the parametric identification problem with recalculated
values of the weight coefficients ρiu

(
u∗0
)
, i = 1, 2, . . . , N .

Step 5. If
∥∥u∗1 − u∗0

∥∥ > ε, then, putting u∗0 = u∗1, we go back to step 4; otherwise,
the problems of parametric identification and optimal control has been solved with the
given accuracy ε > 0.

When using the proposed algorithm in automated process control systems, the need
to memorize the mathematical model is replaced by the need to save the so-called “in-
formation model” of the process, consisting of the differential equations (3), optimizable
functional (2), and observation values for the process state parameters (4), (5), or (6).

It is clear that the amount of calculations in the proposed approach exceeds the
amount of calculations when using the classical separate two-stage approach to math-
ematical modelling and optimal control. But in the proposed mathematical model, in
order to make an optimal decision, specifically given values of the initial state and non-
adjustable process parameters are taken into account, and in addition, it is locally optimal
in the vicinity of u∗ ∈ U . However, it should be taken into account that the power of
modern computing systems makes it possible to solve decision-making problems on the
control of many real technological processes and technical objects using the proposed
approach in real time and obtain more accurate optimal solutions.

Remark 3. The proposed approach can be easily extended to the case of discrete dy-
namic objects described by systems of the form xk+1 = f (xk, u, v, p), k = 0, 1, 2, . . . ,M ,
for which one poses the problem of parametric identification of parameters p ∈ Rl under
available observations of the process state at any discrete moments of time and opti-
mization of the control vector of parameters u ∈ Rr with respect to any given objective
functional to assess the quality of control.



210 On combining the stages of parametric identification

4. Results of Numerical Experiments

Let us consider the results of solving the test problem using the proposed approach. Let
us assume that the process under study is described by the following initial-value problem
with respect to an autonomous system of nonlinear differential equations of the form

˙̃x1(t) =
1

2
x̃22(t)− x̃2(t)− v u1 + 1; ˙̃x2(t) = x̃1(t) + u1 − 1;

˙̃x3(t) = −x̃24(t) + 2x̃4(t)− 2x̃3(t) + v u2; ˙̃x4(t) = −x̃3(t)− u2 + 1,

t ∈ (0, T ], x̃0 ∈ X0 = {x̃(0) : −3 ≤ x̃i(t) ≤ 3, i = 1, 2, 3, 4} (26)

Here v ∈ V = [−3, 3]⊂ R is the value of the nonadjustable parameter; u = (u1, u2) ∈
U ≡ R2 the assignable values of the adjustable parameters; T = 2 the process operating
time. The functional

J (u; x̃0, v, p) =

4∑
i=1

[
x̃i (T ; x̃0, u, v)− x̃Ti

]2 → min
u∈U

, (27)

where x̃T = (2.0589; −4.3317; −1.9177; 1.2578), determines the quality of the se-
lected values of the vector of control parameters u under the already definitely spec-
ified initial state x̃0 and the value of the nonadjustable parameter v. It can be ver-
ified numerically that the result of solving the process optimization problem (26) for
x(0) = (2.35; 2.35; −2.15; −2.15) and v = −1.95 is the vector u∗ = (−2.25; 2.25), for
which the functional (27) takes on the value J ∗ = 0.

Let us assume that instead of the process (26), the exact form of which we will
consider unspecified, the mathematical model of the process be defined by the following
system of differential equations:

ẋ1(t) = p1x
2
2(t)− v u1; ẋ2(t) = p2x1(t)− p2 + u1;

ẋ3(t) = p3x
2
4(t) + p4x3(t)− p4 + v u2; ẋ4(t) = −x3(t)− u2 + 1, (28)

where p = (p1 , p2, p3, p4) ∈ P ≡ R4 is the vector of parameters of the mathematical
model. Let, for different given values of the nonadjustable and controllable parameters
vi ∈ V and ui ∈ U , i = 1, 2, . . . , N , there are results of observations of the state of the
technological process (26) at the initial and final moments of time ti,0 = 0, ti,M = 2:

x̂i0 = x̂i
(
0;ui, vi

)
, x̂iT = x̂i

(
T ;ui, vi

)
, i = 1, 2, . . . , N,

where N = 60 is the number of observations made of separately occurring processes. Let
us write out the observable initial states of the object explicitly as follows

x̂ij(0) = −3 + (i− 1)
6

N
, j = 1, 2, 3, 4, i = 1, 2, . . . , N, (29)

under the following values of the controllable and nonadjustable parameters:

uij = −3 + (i− 1)
6

N
, j = 1, 2; vi = −3 + (i− 1)

6

N
, i = 1, 2, . . . , N.
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The determination of the parameters p of the model (the parametric identification
problem) reduces to the minimization of the following functional:

S(p) =
N∑
i=1

γi
∥∥xi (T ;ui, vi, p)− x̂iT

∥∥2
R4 + ϵ ∥p∥2R4 .

Assuming that the accuracy of all the conducted observations is the same, we let
γi = 1, i = 1, 2, . . . , N . Under the condition P ≡ R4, i.e., there are no constraints on the
values of the parameters, the iterative process (11) and (12) is determined as follows:

pk+1 = pk − αk ×∇S
(
pk
)
, k = 0, 1, 2, . . . ,

∇S
(
pk
)
=

(
2ϵ pk1 +

N∑
i=1

∫ T

0

−ψi
1(t)

[
xi2(t)

]2
dt; 2ϵ pk2 +

N∑
i=1

∫ T

0

−ψi
2(t)x

i
1(t)dt;

2ϵ pk3 +

N∑
i=1

∫ T

0

−ψi
3(t)

[
xi4(t)

]2
dt; 2ϵ pk4 +

N∑
i=1

∫ T

0

ψi
4(t)x

i
3(t)dt

)
,

where xi(t) = xi
(
t; x̂i0, u

i, vi
)
is the solution to the initial-value problem (28) and (29);

ψi(t) the solution to the following adjoint problem, obtained from (13) and (14):

ψ̇i
1(t) = ψi

2(t) p2; ψ̇i
2(t) = −2ψi

1(t) p1 x
i
2(t);

ψ̇i
3(t) = ψi

3(t) p4 + ψi
4(t); ψ̇i

4(t) = −2ψi
3(t) p3x

i
4(t), t ∈ [0, T ),

ψi(T ) =
(
−2γi

[
xi1
(
T ;ui, vi, pk

)
− x̂i1,T

]
; −2γi

[
xi2
(
T ;ui, vi, pk

)
− x̂i2,T

]
;

−2γi
[
xi3
(
T ;ui, vi, pk

)
− x̂i3,T

]
;−2γi

[
xi4
(
T ;ui, vi, pk

)
− x̂i4,T

])
, i = 1, 2, . . . , N.

To solve the optimal control problem under the given initial condition x0 and the
value of the nonadjustable parameter v, we use the procedure (17) and (18) taking into
account that U ≡ R4:

uk+1 = uk − αk ×∇J
(
uk
)
, k = 0, 1, 2, . . . ,

∇J
(
uk
)
=

(∫ T

0

[ξ1(t)v − ξ2(t)] dt;

∫ T

0

[−ξ3(t)v + ξ4(t)] dt

)
,

where xk(t) = xk
(
t;x0, u

k, v
)
is the solution of the initial-value problem with respect to

(29); ξk(t) = ξk
(
t;x0, u

k, v
)
the solution to the adjoint problem:

ξ̇1(t) = ξ2(t) p2; ξ̇2(t) = −2ξ1(t) p1 x2(t);

ξ̇3(t) = ξ3(t) p4 + ξ4(t); ξ̇4(t) = −2ξ3(t) p3 x4(t), t ∈ [0, T ),

ξ(T ) =
(
−2
[
x1
(
T ;x0, u

k, v
)
− x1,T

]
; −2

[
x2
(
T ;x0, u

k, v
)
− x2,T

]
;

−2
[
x3
(
T ;x0, u

k, v
)
− x3,T

]
; −2

[
x4
(
T ;x0, u

k, v
)
− x4,T

])
.
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As a result of numerical solution of the problem using the classical separate two-stage
approach to mathematical modeling and optimal control of the process under considera-
tion, the values of the identifiable parameters of the mathematical model were obtained
as p∗ = (0.6104; 1.4495; −2.0522; −2.0037) and optimal values of the corresponding
control parameters u∗ = (−2.3918; 2.4929) under optimal values of the objective func-
tionals S (p∗) ≈ 1195.47 and J (u∗) ≈ 14.53. As a result of numerical solution of the
problem using the proposed approach, the values of the identifiable parameters of the
mathematical model were computed as p∗ = (0.5148; 2.2775; −2.2108; −1.6383) and
optimal values of the corresponding control parameters u∗ = (−2.1678; 2.2651) under
optimal values of the objective functionals S (p∗) ≈ 7.0 × 10−4 and J (u∗) ≈ 7.86. The
accuracy of the solution of the main optimization problem with respect to the optimiza-
tion of the controllable parameters is εu1 = 10−3, and the accuracy of the solution of
the auxiliary one-dimensional optimization problem is εu2 = 10−4. The accuracy of the
solution to the main optimization problem relative to the optimization of the model pa-
rameters is εp1 = 10−4, and the accuracy of the solution to the auxiliary one-dimensional
optimization problem is εp2 = 10−5. To numerically solve the initial-value problem for
the direct and adjoint systems, the fourth order Runge–Kutta method was employed
with the step h = 0.02. The values of the coefficients θi, i = 1, 2, 3, in the expression of

the weight functions ρjx
(
x0
)
= e−θ1∥x̂j

0−x0∥; ρjv (v) = e−θ2∥vj−v∥; ρju
(
uk
)
= e−θ3∥uj−uk∥

were taken equal to θ1 = θ2 = 1.00 and θ3 = 2.50.

When comparing the described models, a fairly significant difference in the values of
their parameters is visible, which, in turn, implies a difference in the obtained optimal val-
ues of the control parameters. Moreover, the optimal values of the control parameters ob-
tained by the proposed method are closer to the actual optimal vector u∗ = (−2.25; 2.25)
than those obtained by the two-stage method.

5. Conclusion

The main advantage of the proposed approach is that the adopted solution is optimal
for the mathematical model constructed taking into account the observations of the
information model under consideration, which are closest to the optimal solution, i.e., the
mathematical model of the object can be considered locally optimal with respect to the
decision made. Unlike the classical two-stage approach to decision making, the proposed
approach requires a larger amount of computer calculations due to the need to carry out
parametric identification of the model at each iteration of the optimization method. The
results of the numerical experiments confirm the effectiveness of the proposed approach
to solving the problems. It is necessary to take into account that the optimal controls
obtained during the solution may differ significantly from the controls obtained using the
classical sequential two-stage approach to parametric identification and optimization.
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