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Abstract. This paper explores an inverse scattering problem for a system of Dirac equa-
tions with boundary condition depending on spectral parameter nonlinearly. We provide
the scattering data corresponding to the boundary value problem and investigate some
properties. In order to discuss inverse problem, the main equation is derived and its
unique solvability is proved. As a consequence, we present the reconstruction of the po-
tential matrix function from scattering data uniquely.
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1. Introduction

In 1929, the Dirac equation was discovered by P. Dirac, which describes the relativis-
tic motion of a spin- 12 particle in R3 and occurs in various areas of modern physics and
mathematics. In 1973, Ablowitz, Kaup, Newell and Segur [1] made a significant contribu-
tion for the solution of the initial-value problem for a broad class of nonlinear evolution
equations, which increased interest in direct and inverse problems for Dirac operators
in both physics and mathematics. Thaller presented mathematical and physical aspects
of Dirac equation in the book [20] and we refer the reader to the bibliography quoted
therein.

∗ Corresponding author.

Aynur Çöl
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The inverse problem in scattering theory deals with the reconstruction of potential
from knowing scattering data. In 1966, Gasymov and Levitan investigated determination
of the Dirac system from the scattering phase in [11] and the inverse problem for the
Dirac system in [10]. In 1968, Gasymov completely solved an inverse problem of scattering
theory for a system of Dirac equations of order 2n in the manuscript [9]. The inverse
scattering theory for Dirac operators without spectral parameter in boundary condition
has been developed by many authors in [2], [5], [6], [12], [15], [18], [19]. Problems with
boundary conditions depending on spectral parameter have been studied in [3], [4], [7],
[8], [13], [14], [16], [17] and other papers.

In present work we consider the boundary value problem generated by the canonical
system of Dirac differential equations

By′ +mTy +Ω(x)y = λy (1)

on the half line [0,∞) with the boundary condition

(α0y1(0)− β0y2(0)) + (α1y1(0)− β1y2(0))λ+ (α2y1(0)−

−β2y2(0))λ2 + (α3y1(0)− β3y2(0))λ
3 = 0, (2)

where λ is a spectral parameter, m > 0 is the mass and

B =

(
0 1
−1 0

)
, T =

(
1 0
0 −1

)
, Ω(x) =

(
p (x) q (x)
q (x) −p (x)

)
, y =

(
y1 (x)
y2 (x)

)
.

Here, Ω (x) is a canonical potential matrix function, where the components p (x) and
q (x) are real valued functions and hold the following estimates for positive numbers c
and ϵ

|p (x)| ≤ c

(1 + x)
2+ϵ , |q (x)| ≤ c

(1 + x)
1+ϵ . (3)

Assume that the following relations hold for αi, βi ∈ R (i = 0, 3), α3 ̸= 0, β3 ̸= 0,

δik ≥ 0, k = 1; δik = 0, k = 2, 3, where δik = αi+kβi − αiβi+k. (4)

We study the inverse scattering problem for a system for Dirac equations with spectral
parameter in boundary condition. In progress, we will extend the Gasymov method to
the boundary value problem (1)-(3), which also introduces a process for inverse problems
where boundary condition depends on the spectral parameter nonlinearly.

The remaining paper is organized as follows. In Section 2, we obtain the quanti-
ties S (λ) ; λ1, . . . λn; m1, . . .mn to be scattering data corresponding to the boundary
value problem (1)-(3) and investigate their properties. In Section 3, the main equation
is derived in order to study inverse scattering problem. Finally, we show that the main
equation constructed only on the basis of the scattering data has a unique solution and
the reconstruction of the potential matrix function of equation (1) is presented in Section
4.



A. Çöl, Kh.R. Mamedov 5

2. Scattering Data

In this section, we establish the scattering function and the spectrum for the boundary
value problem (1)-(3).

Let Ω (x) = 0, then the vector function f0(x, λ) =

(
λ+m
k
−i

)
eikx is a solution of (1),

where k = λ
√

1− m2

λ2 , |λ| > m.

Assume that the condition (3) holds. Then, as known in [?], there exists a unique

vector solution f(x, λ) =

(
f1 (x, λ)
f2 (x, λ)

)
which tends to f0(x, λ) as x → ∞, Imλ ≥ 0 and

can be expressed as

f (x, λ) = f0 (x, λ) +

∞∫
x

A (x, t) f0 (t, λ) dt, (5)

where the components of the matrix kernel A (x, t) holds the following estimates

|Aij | ≤
c1

(1 + x) (1 + t)
1+ϵ , i ̸= j,

|Aii| ≤
c2

(1 + t)
1+ϵ , i = 1, 2,

and the matrix kernel A (x, t) possesses the following relation

BA (x, x)−A (x, x)B = Ω (x) .

Let W [y(x, λ), z(x, λ)] = ỹ(x, λ)Bz(x, λ) = y1z2 − y2z1 denote the Wronskian of the
vector functions y(x, λ) and z(x, λ), where ỹ is the transposed matrix of y. For all λ in
the intervals (−∞,−m) and (m,∞), f(x, λ) and f(x, λ) constitute a fundamental system
of solutions of equation (1) and their Wronskian is independent of x and and equal to
2iλ+m

k .
Let us use the following notations:

a(λ) := α0 + α1λ+ α2λ
2 + α3λ

3, b(λ) := β0 + β1λ+ β2λ
2 + β3λ

3

and denote ψ(x, λ) =

(
ψ1(x, λ)
ψ2(x, λ)

)
by the solution of (1) satisfying the conditions

ψ1(0, λ) = b(λ), ψ2(0, λ) = a(λ).

Obviously, this solution holds the boundary condition (2).
After stating the above preliminaries, we can now present the following lemmas.

Lemma 1. The identity

2i
λ+m

k

ψ (x, λ)

Φ (λ)
= f (x, λ)− S (λ) f (x, λ) (6)
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holds for all λ in the intervals (−∞,−m) and (m,∞), where

S(λ) = Φ(λ)[Φ(λ)]−1 (7)

and

S−1(λ) = S(λ), |S(λ)| = 1.

Proof. Since f (x, λ) and f (x, λ) for real λ and |λ| > m constitute a linearly independent
matrix system of solutions of (1), then any solution of (1) can be be expressed as

ψ (x, λ) = c1(λ)f (x, λ) + c2(λ)f (x, λ).

If we evaluate the following Wronskians of f (x, λ) and ψ (x, λ):

f̃(0, λ)Bψ(0, λ) = c2(λ)2i
λ+m

k
,

f∗(0, λ)Bψ(0, λ) = −c1(λ)2i
λ+m

k

and take Φ(λ) = f̃(0, λ)Bψ(0, λ), then we find c1(λ) and c2(λ) and hence ψ(x, λ) as

ψ (x, λ) =
k

2i (λ+m)

[
−Φ(λ)f (x, λ) + Φ(λ)f (x, λ)

]
. (8)

To show Φ(λ) ̸= 0 for all real λ, |λ| > m, we assume the contrary. Then there exists λ0,
|λ0| > m such that

f̃(0, λ0)Bψ(0, λ0) = a(λ0)f1(0, λ0)− b(λ0)f2(0, λ0) = 0.

Since a(λ) = a(λ) and b(λ) = b(λ) for all real λ, |λ| > m, we get

2i
λ0 +m

k
=W [f(0, λ0), f(0, λ0)] =

(
b(λ0)

a(λ0)
− b(λ0)

a(λ0)

)
|f2(0, λ0)|2 = 0,

which yields λ0 = −m, hence we arrive at a contradiction. This proves the claim.
Dividing equality (8) by k

2i(λ+m)Φ(λ), the identity (6) is obtained and S(λ) is defined

with (7).
From the definition of S(λ), we obtain

S(λ) =
Φ(λ)

Φ(λ)
=

[
Φ(λ)

Φ(λ)

]
=
[
S(λ)

]−1

and

|S(λ)| =

∣∣∣∣∣Φ(λ)Φ(λ)

∣∣∣∣∣ = 1.

Thus, the lemma is proved. ◀
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The function S(λ) is called the scattering function of the boundary value problem
(1)-(3).

From the definition of S(λ), we obtain that the function S0(λ) − S(λ) is of an inte-
grable square over (−∞,−m] and [m,∞) where S0(λ) =

α3−iβ3

α3+iβ3
. In fact, using (5) and

substituting related expressions into the function Φ(λ), we find

Φ(λ) = λ3[α3 + iβ3 +O

(
1

λ

)
].

Taking this into account, we get

S(λ) =
α3 − iβ3 +O

(
1
λ

)
α3 + iβ3 +O

(
1
λ

) =
α3 − iβ3
α3 + iβ3

+O

(
1

λ

)
, |λ| → ∞.

Let denote S0(λ) := α3−iβ3

α3+iβ3
. Hence we have S0(λ) − S(λ) = O

(
1
λ

)
as |λ| → ∞, which

shows the claim.
Next, let us investigate properties of Φ(λ) in the upper half plane.

Lemma 2. The function Φ (λ) is analytic in the upper half plane Imλ > 0, continuous
along the real axis except at λ = m and has only a finite number of zeros in the interval
(−m,m). All the zeros in (−m,m) are simple.

Proof. The functions f1(0, λ) and f2(0, λ) are continuous for all real λ ̸= m and analytic
in the upper plane (Im λ > 0). Then, it follows that the function Φ(λ) has the same
properties.

Let µ (Imµ > 0 or µ ∈ (−m,m)) be a zero of the function Φ(λ). It satisfies the
equation (1)

Bf ′ (x, µ) +mTf (x, µ) +Ω (x) f (x, µ) = µf (x, µ) . (9)

By going over to the Hermitian conjugates of the equation, we obtain the following
equation

−f∗′ (x, µ)B +mf∗ (x, µ)T + f∗ (x, µ)Ω (x) = µf∗ (x, µ) , (10)

where the function f∗ (x, µ) denotes the transposed vector function f (x, µ). Multiplying
(9) on the left by f∗ (x, µ) and (10) on the right by f (x, µ), subtracting the second from
the first, and finally integrating the result with respect to x over (0,∞), we get

f∗(0, λ)Bf(0, λ) + (µ− µ)

∞∫
0

f∗(x, µ)f(x, µ)dx = 0. (11)

If µ is a zero of Φ(λ), then we have f1(0, µ) =
b(µ)
a(µ)f2(0, µ). Hence

f∗(0, λ)Bf(0, λ) =

(
b(λ0)

a(λ0)
− b(λ0)

a(λ0)

)
|f2(0, λ0)|2 =
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=
|f2(0, µ)|2

|a(µ)|2

[
(µ− µ)

2∑
i=0

(αi+1βi − αiβi+1)|µ|2i +

+(µ2 − µ2)

1∑
i=0

(αi+2βi − αiβi+2)|µ|2i + (µ3 − µ3)(α3β0 − α0β3)

]
.

If we substitute the result in (11) and take the condition (4) into account, we obtain

(µ− µ)

 |f2(0, µ)|2
|a(µ)|2

2∑
i=0

(αi+1βi − αiβi+1)|µ|2i +
∞∫
0

f∗(x, µ)f(x, µ)dx

 = 0. (12)

The condition (4) leads that the expression in the parentheses is positive, which implies
µ− µ = 0, i.e. µ is real. Hence we conclude that µ ∈ (−m,m).

Let us prove that there are only finitely many zeros. We assume that δ denotes the
infimum of the distances between two neighboring zeros of Φ(λ), and show δ > 0. Suppose

the contrary and let {λk} and
{
λ̃k

}
be two sequences of zeros of the function Φ(λ) such

that

lim
k→∞

(
λ̃k − λk

)
= 0, −m ≤ λk < λ̃k < 0.

For A large enough, the estimates

if1 (x, λ) >
1

2

λ+m√
m2 − λ2

e−
√
m2−λ2x, if2 (x, λ) >

1

2
e−

√
m2−λ2x

hold uniformly with respect to x ∈ [A,∞) and λ ∈ (−m,m), which yields

∞∫
A

f∗ (x, λk) f
(
x, λ̃k

)
dx >

1

4

e
−
(√

m2−λ2
k+

√
m2−λ̃k

2
)
A

√
m2 − λ2k +

√
m2 − λ̃k

2
.

Letting k → ∞, it follows that

lim
k→∞

∞∫
A

f∗ (x, λk) f
(
x, λ̃k

)
dx = +∞. (13)

On the other hand, the equality (12) yields

0 =

∞∫
0

f∗ (x, λk) f
(
x, λ̃k

)
dx+

f2 (0, λk)f2

(
0, λ̃k

)
a
(
λ̃k

)
a (λk)

2∑
i=0

(αi+1βi − αiβi+1)λ
i
kλ̃k

i
=

=

A∫
0

f∗ (x, λk)
[
f
(
x, λ̃k

)
− f (x, λk)

]
dx+

A∫
0

f∗ (x, λk) f (x, λk) dx+
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+

∞∫
A

f∗ (x, λk) f
(
x, λ̃k

)
dx+

f2 (0, λk)f2

(
0, λ̃k

)
a
(
λ̃k

)
a (λk)

2∑
i=0

(αi+1βi − αiβi+1)λ
i
kλ̃k

i
,

and letting k → ∞, we get

lim
k→∞

∞∫
A

f∗ (x, λk) f
(
x, λ̃k

)
dx ≤ 0. (14)

Comparing (13) and (14), we arrive at the contradiction. We conclude that δ > 0 and
hence the function Φ(λ) has only a finite number of zeros.

Finally, let us show that all zeros of the function Φ(λ) in (−m,m) are simple. When
we differentiate the identity

Bf ′ (x, λ) +mTf (x, λ) +Ω (x) f (x, λ) = λf (x, λ) (15)

with respect to λ, assuming that λ lies in (−m,m), and go over to the hermitian conju-
gates of the matrices, we get

−
[
ḟ∗ (x, λ)

]′
B +mḟ∗ (x, λ)T + ḟ∗ (x, λ)Ω (x) = λḟ∗ (x, λ) + f∗ (x, λ) , (16)

where ḟ denotes differentiation with respect to λ. Multiplying (15) on the left by ḟ∗ (x, λ)
and (16) on the right by f (x, λ) and subtracting the second from the first, we obtain

ḟ∗ (x, λ)Bf ′ (x, λ) +
[
ḟ∗ (x, λ)

]′
Bf (x, λ) = −f∗ (x, λ) f (x, λ) .

Integrating the result with respect to x over (0,∞), it follows that

ḟ∗ (0, λ)Bf (0, λ) =

∞∫
0

f∗ (x, λ) f (x, λ) dx.

Let λj be a zero of the function Φ(λ). The functions Φ(λ) and Φ̇(λ) yields that

ḟ∗ (0, λj)Bf (0, λj) = −
˙Φ(λj)f2 (0, λj)

a(λj)
+
[
ȧ(λj)b(λj)− a(λj)ḃ(λj)

] [f2 (0, λj)
a(λj)

]2
and hence

−
˙Φ(λj)f2 (0, λj)

a(λj)
=

= −
[
f2 (0, λj)

a(λj)

]2 2∑
i=0

(αi+1βi − αiβi+1)λ
2i
j +

∞∫
0

f∗ (x, λ) f (x, λ) dx. (17)

Since f2 (0, λj) is pure imaginary and the condition (4) holds, the right side of the equality

is positive. This shows Φ̇(λj) ̸= 0, i.e., the zeros of Φ(λ) are simple. The lemma is proved.
◀
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The numbers mj , j = 1, . . . n, are defined with

m−2
j ≡

∞∫
0

f∗ (x, λj) f (x, λj) dx+
|f2 (0, λj) |2

|a(λj)|2
2∑

i=0

(αi+1βi − αiβi+1)λ
2i
j

and called norming numbers for boundary value problem (1)-(3).
Consequently, in this section we have defined the scattering function S (λ) for bound-

ary value problem (1)-(3) and have shown that the denominator of scattering function
has only finitely many discrete zeros λ1, ..., λn in the interval (−m,m) with the norming
numbers m1, ...,mn. Now, we can give the following definition.

Definition. The set of values
{
S (λ) , λk,mk; k = 1, n

}
is called the scattering data for

boundary value problem (1)-(3).

3. The Main Equation

In this section, we present the main equation in order to discuss of inverse scattering
problem.

Theorem 1. For every fixed x ≥ 0, the kernel A(x, t) of the solution (5) satisfies the
integral equation which is called the main equation

F (x+ y) +A(x, y) +

∞∫
x

A(x, t)F (t+ y)dt = 0, y > x, (18)

where

F (x+ y) = Fs (x+ y)−
n∑

j=1

2m2
jf0 (x, λj) f̃0 (y, λj) (19)

and

Fs (x) = Re
1

2π

∫
|λ|>m

(S0(λ)− S(λ))

(
λ+m
k −i
−i − k

λ+m

)
eikxdλ. (20)

Proof. Substituting (5) into the identity (6), we obtain

2i
λ+m

k

ψ (x, λ)

Φ (λ)
−
(

λ+m
k
i

)
e−ikx + S0(λ)

(
λ+m
k
−i

)
eikx =

=

∞∫
x

A (x, t)

(
λ+m
k
i

)
e−iktdt− S0(λ)

∞∫
x

A (x, t)

(
λ+m
k
−i

)
eiktdt+

+(S0(λ)− S(λ))

(
λ+m
k
−i

)
eikx + (S0(λ)− S(λ))

∞∫
x

A (x, t)

(
λ+m
k
−i

)
eiktdt.
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Multiplying both sides of this equality by 1
2π

k
λ+m

(
λ+m
k ,−i

)
eiky and integrating with

respect to λ over (−∞,−m) and (m,∞), we get

Re
1

2π

∫
|λ|>m

2i
ψ (x, λ)

Φ(λ)

(
λ+m

k
,−i
)
eikydλ+

+Re
1

2π

∫
|λ|>m

S0(λ)

(
λ+m
k −i
−i − k

λ+m

)
eik(x+y)dλ−

−Re
1

2π

∫
|λ|>m

(
λ+m
k −i
i k

λ+m

)
e−ik(x−y)dλ =

= Re
1

2π

∫
|λ|>m

∞∫
x

A (x, t)

(
λ+m
k −i
i k

λ+m

)
e−ik(t−y)dtdλ−

−Re
1

2π

∫
|λ|>m

S0(λ)

∞∫
x

A (x, t)

(
λ+m
k −i
−i − k

λ+m

)
eik(t+y)dtdλ+

+Re
1

2π

∫
|λ|>m

(S0(λ)− S(λ))

(
λ+m
k −i
−i − k

λ+m

)
eik(x+y)dλ+

+Re
1

2π

∫
|λ|>m

(S0(λ)− S(λ))

∞∫
x

A (x, t)

(
λ+m
k −i
−i − k

λ+m

)
eik(t+y)dtdλ. (21)

For the first term on the left, we evaluate

Re
1

2π

∫
|λ|>m

(
λ+m
k −i
i k

λ+m

)
e−ik(t−y)dλ = δ(t− y)

(
1 0
0 1

)
= δ(t− y)I2,

where δ(x) is a Dirac delta function, and using the result we obtain

Re
1

2π

∫
|λ|>m

∞∫
x

A (x, t)

(
λ+m
k −i
i k

λ+m

)
e−ik(t−y)dtdλ =

=

∞∫
x

A (x, t)Re
1

2π

∫
|λ|>m

(
λ+m
k −i
i k

λ+m

)
e−ik(t−y)dλdt =

=

∞∫
x

A (x, t) δ(t− y)dt = A (x, y) .
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For the second term on the left, using the fact A (x,−y) = 0 for y > x, we obtain

Re
1

2π

∫
|λ|>m

S0(λ)

∞∫
x

A (x, t)

(
λ+m
k −i
−i − k

λ+m

)
eik(t+y)dtdλ =

=

∞∫
x

A (x, t)Re
1

2π

∫
|λ|>m

α3 − iβ3
α3 + iβ3

(
λ+m
k −i
−i − k

λ+m

)
eik(t+y)dtdλ =

=
α2
3 − β2

3

α2
3 + β2

3

∞∫
x

A (x, t)

(
1 0
0 −1

)
δ(−t− y)dt = 0.

Let us define Fs (x) with (20). Therefore, for y > x, the right side of (21) equals

Fs(x+ y) +A(x, y) +

∞∫
x

A(x+ t)Fs(t+ y)dt.

On the other side, using the residue theorem and the formula (17) we have

Re
1

2π

∫
|λ|>m

2i
ψ (x, λ)

Φ(λ)

(
λ+m

k
,−i
)
eikydλ− Re

1

2π

∫
|λ|>m

(
λ+m
k −i
i k

λ+m

)
e−ik(x−y)dλ+

+Re
1

2π

∫
|λ|>m

S0(λ)

(
λ+m
k −i
−i − k

λ+m

)
eik(x+y)dλ =

= −
n∑

j=1

Res

[
2ψ (x, λ)

Φ (λ)

(
λ+m

k
,−i
)
eiky

] ∣∣∣∣∣
λ=λj

=

= −
n∑

j=1

2a(λj)f (x, λj)

Φ̇ (λj) f2 (0, λj)

(
λj +m

k
,−i
)
eiky =

n∑
j=1

2m2
jf (x, λj)

(
λj +m

k
,−i
)
eiky =

=

n∑
j=1

2m2
j

( λj+m
k
−i

)
eikx +

∞∫
x

A (x, t)

(
λj+m

k
−i

)
eiktdt

(λ+m

k
,−i
)
eiky.

Substituting this value into the left side of (21), we get the integral equation (18), where
F (x) is defined with the formula (19). This completes the proof of theorem. ◀
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4. Solvability of the Main Equation

The inverse scattering problem consists in recovering the coefficient Ω (x) from the scat-
tering data of the boundary value problem (1)-(3). In this section, we examine the solv-
ability of the main equation and present that the potential matrix function Ω (x) can be
recovered uniquely from the scattering data.

Theorem 2. For every fixed x, the main equation (20) has a unique matrix solution
with components in L2 (x,∞).

Proof. In order to determine Ω (x), it is sufficient to know A(x, t). Therefore, assume that
the data

{
S (λ) , λk,mk; k = 1, n

}
are given. Then we write the matrix function F (x) by

the formula (19) and construct the equation (18). Let us take the kernel A(x, t) of the
solution (5) as unknown and regard this equation as a Fredholm-type matrix equation
in the space of matrix functions with components in L2 (x,∞) for every fixed x. Denote
f(t) = A(x, t), then we get the corresponding homogeneous equation for each fixed x ≥ 0

f(y) +

∞∫
x

f(t)F (t+ y)dt = 0. (22)

The transition function F (x) possesses similar properties to the transition function of the
problem without the spectral parameter in the boundary condition ([9]). With the help of
the proof of Theorem 2.3.1 in [9], the result is easily obtained that the equation (22) has
only the zero solution with components in L2 (x,∞), which proves the claim and the the-
orem is proved. ◀

Corollary. The scattering data of the boundary value problem (1)-(3) determine the
potential matrix function Ω (x) in equation (1) uniquely.

Proof. The main equation (18) is constructed only on the basis of the scattering data,
and by Theorem 2, it has a unique solution A (x, y) for every x ≥ 0. Hence, we have the
matrix kernel A (x, y) of the solution (5), and obtain the potential matrix function as

Ω (x) = BA (x, x)−A (x, x)B.

◀
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8. Çöl A., Mamedov Kh. R. On an inverse scattering problem for a class of Dirac oper-
ators with spectral parameter in the boundary condition. J. Math. Anal. Appl., 2012,
393 (2), pp. 470-478.

9. Gasymov M.G. An inverse problem of scattering theory for a system of Dirac equations
of order 2n. Trans. Mosc. Math. Soc., 1968, 19, pp. 41-119.

10. Gasymov M.G., Levitan B.M. The inverse problem for a Dirac system. Dokl. Akad.
Nauk SSSR, 1966, 167 (5), pp. 967-970) (in Russian).

11. Gasymov M.G., Levitan B.M. Determination of the Dirac system from the scattering
phase. Dokl. Akad. Nauk SSSR, 1966, 167 (6), pp. 1219-1222 (in Russian).

12. Gesztesy F., Kiselev A., Makarov K.A. Uniqueness results for matrix-valued
Schrödinger, Jacobi, and Dirac-type operators. Math. Nachr., 2002, 239/240, pp. 103-
145.

13. Gulsen T., Yilmaz E., Koyunbakan H. Inverse nodal problem for p-Laplacian Dirac
system. Math. Methods Appl. Sci., 2017, 40 (7), pp. 2329-2335.
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