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Abstract. It is known that the function obtained by the action of the Calderon-Zygmund
operator on a Lebesgue integrable function can be non-Lebesgue integrable. In this paper,
we prove that the function obtained by the action of the Calderon-Zygmund operator on a
Lebesgue integrable function is A-integrable and derive an analogue of the Riesz equality.
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1. Introduction

A Calderon-Zygmund operator is a principal value convolution operator

(Tf)(x) = lim
ε→0+

∫
{y∈Rd : |x−y|>ε}

K(x− y)f(y)dy,

where dy denotes Lebesgue measure in Rd and

K(x) =
Ω(x)

|x|d
, x ≠ 0,

Ω(x) is a homogeneous function of degree 0, continuously by Hölder with exponent
α ∈ (0, 1] on the unit sphere Sd−1 and with zero integral on the Sd−1.

Let D ⊂ Rd be a bounded domain and f ∈ L1(D). In the present paper we consider
the corresponding modification of T . Namely, the restricted Calderon-Zygmund operator
TD is defined as

(TDf)(x) = T (χDf)(x) = lim
ε→0+

∫
{y∈D : |x−y|>ε}

K(x− y)f(y)dy, x ∈ D.
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2 The A-integral and Calderon-Zygmund operators

From the theory of singular integrals (see [14]) it is known that the Calderon-Zygmund
operator is a bounded operator in the space Lp(D), 1 < p < ∞, that is, if f ∈ Lp(D),
then TD(f) ∈ Lp(D) and

∥TDf∥Lp ≤ Cp∥f∥Lp . (1)

In the case f ∈ L1(D) only the weak inequality holds:

m{x ∈ D : |(TDf)(x)| > λ} ≤ C1

λ
∥f∥L1

, (2)

where m stands for the Lebesgue measure, Cp, C1 are constants independent of f . In the
case f ∈ L1(D) from inequalities (1), (2) it follows that

m{x ∈ D : |(TDf)(x)| > λ} = o(1/λ), λ → +∞. (3)

Indeed, if f ∈ L1(D), then for every ε > 0 there exists n ∈ N such that ∥f − [f ]n∥L1 ≤
ε

4C1
, where [f(x)]n = f(x) for |f(x)| ≤ n and [f(x)]n = 0 for |f(x)| > n. It follows from

(2) that

m{x ∈ D : |TD(f − [f ]n)(x)| > λ/2} ≤ 2C1

λ
· ∥f − [f ]n∥L1 ≤ ε

2λ
. (4)

Since the function [f(x)]n is bounded, [f ]n ∈ Lp(D) for every p ≥ 1; whence TD([f ]n) ∈
Lp(D) for every p > 1. Therefore TD([f ]n) ∈ L1(D). It follows that for sufficiently large
values of λ > 0

λ

2
m{x ∈ D : |(TD[f ]n)(x)| > λ/2} ≤

∫
{x∈D: |(TD[f ]n)(x)|>λ

2 }
|(TD[f ]n)(x)|dx <

ε

4
. (5)

We obtain from (4) and (5) that for sufficiently large values of λ > 0

m{x ∈ D : |(TDf)(x)| > λ}

≤ m{x ∈ D : |TD(f − [f ]n)(x)| > λ/2}+m{x ∈ D : |(TD[f ]n)(x)| > λ/2} <
ε

λ
.

This means that the condition (3) holds.

Note that in the case of f ∈ L1(D) the function TDf is not Lebesgue integrable on D.
In the present paper, we prove that if f ∈ L1(D), then the function TDf is A-integrable
on D and derive an analogue of the Riesz equality.
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2. A-integral

For a measurable complex function f(x) on domain D we set

[f(x)]n = [f(x)]n = f(x) for |f(x)| ≤ n,

[f(x)]n = n · sgn f(x), [f(x)]n = 0 for |f(x)| > n, n ∈ N,

where sgnw = w
|w| for w ̸= 0 and sgn 0 = 0.

In 1928, Titchmarsh [15] introduced the notions of Q- and Q′-integrals of a function
measurable on D.

Definition 1. If the finite limit lim
n→∞

∫
D
[f(x)]ndx ( lim

n→∞

∫
D
[f(x)]ndx, respectively) ex-

ists, then f is said to be Q-integrable (Q′-integrable, respectively) on D; that is, f ∈ Q(D)
(f ∈ Q′(D)). The value of this limit is referred to as the Q-integral (Q′-integral) of this
function and is denoted by (Q)

∫
D
f(x)dx ((Q′)

∫
D
f(x)dx.

In the same paper, Titchmarsh when studying properties of trigonometric series
conjugate to Fourier series of Lebesgue integrable functions, established that the Q-
integrability leads to a series of natural results. A very uncomfortable fact impeding
the application of Q-integrals and Q′-integrals when dealing with diverse problems of
function theory is the absence of the additivity property; that is, the Q-integrability
(Q′-integrability) of two functions does not imply the Q-integrability (Q′-integrability)
of their sum. If one adds the condition

m{x ∈ D : |f(x)| > λ} = o(1/λ), λ → +∞ (6)

to the definition of Q-integrability (Q′-integrability) of a function f , then the Q-integral
and Q′-integral coincide (Q(D) = Q′(D)), and these integrals become additive.

Definition 2. If f ∈ Q′(D) (or f ∈ Q(D)) and condition (6) holds, then f is
said to be A-integrable on D, f ∈ A(D), and the limit lim

n→∞

∫
D
[f(x)]ndx (or the limit

lim
n→∞

∫
D
[f(x)]ndx) is denoted in this case by (A)

∫
D
f(x)dx.

The properties of Q- and Q′-integrals were investigated in [2]-[5], [9], [10]; for the
applications of A-, Q- and Q′-integrals in the theory of functions of real and complex
variables we refer the reader to [1], [6], [7], [12], [13], [16], [17].

3. A-integrability and Riesz’s Equation for
Calderon-Zygmund Operators

From the properties of singular integrals it follows that (see [8]) if f ∈ Lp(D), p > 1
and g ∈ Lq(D), q > 1, 1/.p+ 1/.q = 1, then∫

D

g(x)(TDf)(x)dx = lim
ε→0+

∫∫
{x,y∈D: |x−y|>ε}

K(x− y)f(y)g(x)dydx
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=

∫
D

f(x)(T̃Dg)(x)dx, (7)

where

(T̃Dg)(x) = lim
ε→0+

∫
{y∈D : |x−y|>ε}

K(y − x)g(y)dy, x ∈ D.

In particular, if the kernel K is even, then∫
D

g(x)(TDf)(x)dx =

∫
D

f(x)(TDg)(x)dx,

and if it is odd, then ∫
D

g(x)(TDf)(x)dx = −
∫
D

f(x)(TDg)(x)dx.

In this section we put forward an analogue of (7) for f ∈ L1(D).

Theorem. Let f ∈ L1(D) and g(x) be a bounded function on D with bounded (T̃Dg)(x)
on D. Then the function g(x)(TDf)(x) is A-integrable on D and

(A)

∫
D

g(x)(TDf)(x)dx =

∫
D

f(x)(T̃Dg)(x)dx. (8)

In particular, if the kernel K is even, then

(A)

∫
D

g(x)(TDf)(x)dx =

∫
D

f(x)(TDg)(x)dx,

and if it is odd, then

(A)

∫
D

g(x)(TDf)(x)dx = −
∫
D

f(x)(TDg)(x)dx.

Proof. Since the A-integral satisfies the additivity property, it can be assumed that the
function f is real, f(x) ≥ 0 for any x ∈ D, and sup

x∈D
{|g(x)|, |(T̃Dg)(x)|} ≤ 1. For x /∈ D

we assume that f(x) = 0.
Our proof will depend on a certain refinement of Besicovitch’s method [8] for a direct

proof of the existence of the conjugate function (this method employs only the machinery
of the theory of sets of points). This method was improved by Titchmarsh [15] and
Ul’yanov [16] for the study of properties of the conjugate function. It is worth noting
that Besicovitch–Titchmarsh–Ul’yanov’s method is applicable only to functions of one
real variable (because this method relies on some facts that are valid only in the one-
dimensional case). For example, it depends on the fact that any open set is a union of an at
most countable number of intervals (to overcome this difficulty, we used Vitali’s covering
lemma). To make this method to work in the setting of functions of several variables, we
have slightly improved the construction, which for simplicity of presentation is divided
into three steps. We note that this method used in [6] and [7] to obtain an analogue of
the Riesz equality for the Ahlfors-Beurling and Riesz transforms.
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Step 1. In this part we construct and study properties of the sets Gp, Ln, L
′
n, Tn

and the functions Φn(x), Φ
∗
n(x), which we shall use later.

Denote Φn(x) = f(x) − [f(x)]n for x ∈ D and Φn(x) = 0 for x ∈ Rd/D. Then εn =∫
D
Φn(x)dx → 0 as n → ∞. Take n ∈ N such that εn < 1. Let En = {x ∈ D : f(x) > n}.

For any x ∈ En we set

rx = sup{r > 0 :

∫
B(x;r)

Φn(y)dy =
n

2
ωdr

d}

if {r > 0 :
∫
B(x;r)

Φn(y)dy = n
2 ωdr

d} ̸= ∅, and define rx = 0 otherwise, where B(x; r) is

an open ball with center at x and with radius r, ωd = m(B(x; 1)) = π
d
2

Γ ( d
2+1)

is measure

of d-dimensional unit ball. Note that if x ∈ En is a Lebesgue point of the function Φn(x),
then rx > 0 and, therefore, the set En\E′

n has a zero measure, where E′
n = {x ∈ En :

rx > 0}.
Consider the system of sets {B(x; rx)}x∈E′

n
. It follows from the Vitali’s covering

lemma (see [11]) that there exists an at more countable set of points xk ∈ E′
n, k ∈ I ⊂ N

such that the balls B(xk; rxk
), k ∈ I are pairwise disjoint and⋃

x∈E′
n

B(x; rx) ⊂
⋃
k∈I

B(xk; 5rxk
).

Denote

G1 = B(x1; 5rx1
)\

⋃
k>1

B(xk; rxk
),

Gp = B(xp; 5rxp
)\

p−1⋃
k=1

Gk

⋃⋃
k>p

B(xk; rxk
)

 , p ≥ 2, p ∈ I.

Then the measurable sets Gp, p ∈ I are pairwise disjoint, and moreover,

B(xp; rxp
) ⊂ Gp ⊂ B(xp; 5rxp

), p ∈ I,

E′
n ⊂

⋃
x∈E′

n

B(x; rx) ⊂
⋃
p∈I

Gp =
⋃
p∈I

B(xp; 5rxp).

Denote Φ∗
n(x) = 1

m(Gp)

∫
Gp

Φn(y)dy for x ∈ Gp, p ∈ I and Φ∗
n(x) = 0 for x ∈

Rd\
⋃

p∈I Gp. Then for any p ∈ I we have∫
Gp

Φn(x)dx =

∫
Gp

Φ∗
n(x)dx. (9)

Note that, for any x ∈ Gp, p ∈ I,

0 ≤ Φ∗
n(x) ≤

1

m(B(xp; rxp
))

∫
B(xp;5rxp )

Φn(y)dy ≤ 1

ωdrdxp

· n
2
ωd5

drdxp
=

5dn

2
.
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Setting Ln =
⋃

p∈I Gp, L
′
n =

⋃
p∈I B(xp; 10rxp

), we have

m(Ln) ≤
∑
p∈I

ωd5
drdxp

≤ 5d · 2
n

∑
p∈I

∫
B(xp;rxp )

Φn(y)dy

≤ 2 · 5d

n

∫
D

Φn(y)dy =
2 · 5dεn

n
,

m(L′
n) ≤

∑
p∈I

ωd10
drdxp

≤ 2 · 10dεn
n

. (10)

Let Dn = D\L′
n. We first prove the inequality∫

Dn

|TD(Φn − Φ∗
n)(x)|dx ≤ 2 · 10dd2ωd∥Ω∥α · εn, (11)

where

∥Ω∥α = ∥Ω∥∞ +H(Ω;α;Sd−1),

∥Ω∥∞ = max
x∈Sd−1

|Ω(x)|, H(Ω;α;Sd−1) = sup
x,y∈Sd−1,x ̸=y

|Ω(x)−Ω(y)|
|x− y|α

.

Denote hn(x) = TD(Φn − Φ∗
n)(x). For any x ∈ Dn we have

|hn(x)| =
∣∣∣∣∫

D

K(x− y)[Φn(y)− Φ∗
n(y)]dy

∣∣∣∣
=

∣∣∣∣∣∣
∑
p∈I

∫
Gp

K(x− y)[Φn(y)− Φ∗
n(y)]dy

∣∣∣∣∣∣
≤

∑
p∈I

∣∣∣∣∣
∫
Gp

Ω(x− y)

|x− y|d
Φn(y)dy −

∫
Gp

Ω(x− y)

|x− y|d
Φ∗
n(y)dy

∣∣∣∣∣ . (12)

It follows from the integral mean value theorem that for any p ∈ I there are points
yp, y

∗
p ∈ B(xp; 5rxp

) such that∫
Gp

Ω(x− y)

|x− y|d
Φn(y)dy =

Ω(x− yp)

|x− yp|d

∫
Gp

Φn(y)dy,

∫
Gp

Ω(x− y)

|x− y|d
Φ∗
n(y)dy =

Ω(x− y∗p)

|x− y∗p |d

∫
Gp

Φ∗
n(y)dy.

Then, using (9) and (12),

|hn(x)| ≤
∑
p∈I

∣∣∣∣Ω(x− yp)

|x− yp|d
−

Ω(x− y∗p)

|x− y∗p |d

∣∣∣∣ · ∫
Gp

Φn(y)dy. (13)
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Since, for any y, y∗ ∈ B(xp; 5rxp
) and x ∈ Dn,∣∣∣∣Ω(x− y)

|x− y|d
− Ω(x− y∗)

|x− y∗|d

∣∣∣∣
≤ |Ω(x− y)| ·

∣∣∣∣ 1

|x− y|d
− 1

|x− y∗|d

∣∣∣∣+ 1

|x− y|d
· |Ω(x− y)−Ω(x− y∗)|

≤ ∥Ω∥∞ ·
∣∣|x− y∗|d − |x− y|d

∣∣
|x− y|d|x− y∗|d

+
1

|x− y|d
·
∣∣∣∣Ω(

x− y

|x− y|

)
−Ω

(
x− y∗

|x− y∗|

)∣∣∣∣
≤ ∥Ω∥∞ · |y − y∗|

d−1∑
k=0

|x− y|k−d|x− y∗|−k−1 +
H(Ω;α;Sd−1)

|x− y|d
·
∣∣∣∣ x− y

|x− y|
− x− y∗

|x− y∗|

∣∣∣∣α

≤
10d · 2d+1rxp

|x− xp|d+1
∥Ω∥∞ +

2d40αrαxp

|x− xp|d+α
H(Ω;α;Sd−1),

it follows from (13) that

|hn(x)| ≤
∑
p∈I

[
10d · 2d+1rxp

|x− xp|d+1
∥Ω∥∞ +

2d40αrαxp

|x− xp|d+α
H(Ω;α;Sd−1)

]
·
∫
Gp

Φn(y)dy

≤
∑
p∈I

[
10d · 2d+1rxp

|x− xp|d+1
∥Ω∥∞ +

2d40αrαxp

|x− xp|d+α
H(Ω;α;Sd−1)

]
·
(n
2
ωd5

drdxp

)

=
∑
p∈I

[
10d+1ndωdr

d+1
xp

|x− xp|d+1
∥Ω∥∞ +

5 · 10d−140αnωdr
d+α
xp

|x− xp|d+α
H(Ω;α;Sd−1)

]
Therefore, ∫

Dn

|hn(x)|dx ≤ 10d+1ndωd∥Ω∥∞
∑
p∈I

rd+1
xp

∫
Dn

dx

|x− xp|d+1

+5 · 10d−140αnωdH(Ω;α;Sd−1)
∑
p∈I

rd+α
xp

∫
Dn

dx

|x− xp|d+α

≤ 10d+1ndωd∥Ω∥∞
∑
p∈I

rd+1
xp

∫
{x:|x−xp|≥10rxp}

dx

|x− xp|d+1

+5 · 10d−140αnωdH(Ω;α;Sd−1)
∑
p∈I

rd+α
xp

∫
{x:|x−xp|≥10rxp}

dx

|x− xp|d+α

= 5 · 10d−1ndω2
d

[
2d∥Ω∥∞ + 4αH(Ω;α;Sd−1)

]
·
∑
p∈I

rdxp

≤ 2 · 10dd2ωd∥Ω∥α · εn
proving inequality (11).
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We represent the function f(x) in the form

f(x) = [f(x)]n + Φ∗
n(x) + [Φn − Φ∗

n](x). (14)

Step 2. In this part we prove the equality

lim
n→∞

∫
Dn

g(x)(TDf)(x)dx =

∫
D

f(x)(T̃Dg)(x)dx. (15)

Consider the integral ∫
Dn

g(x)(TDf)(x)dx

=

∫
Dn

g(x){(TD[f ]n)(x) + (TDΦ∗
n)(x) + TD(Φn − Φ∗

n)(x)}dx

=

∫
Dn

g(x)(TD[f ]n)(x)dx+

∫
Dn

g(x)(TDΦ∗
n)(x)dx

+

∫
Dn

g(x)TD(Φn − Φ∗
n)(x)dx = S1 + S2 + S3. (16)

By (7), we have

S1 =

∫
Dn

g(x)(TD[f ]n)(x)dx

=

∫
D

g(x)(TD[f ]n)(x)dx−
∫
L′

n

g(x)(TD[f ]n)(x)dx

=

∫
D

[f(x)]n(T̃Dg)(x)dx−
∫
L′

n

g(x)(TD[f ]n)(x)dx = S
(1)
1 + S

(2)
1 .

Since

|S(2)
1 | =

∣∣∣∣∣
∫
L′

n

g(x)(TD[f ]n)(x)dx

∣∣∣∣∣ ≤
∫
L′

n

|(TD[f ]n)(x)|dx

≤
[
m(L′

n) ·
∫
D

|(TD[f ]n)(x)|2dx
]1/.2

≤ C2

[
m(L′

n) ·
∫
D

([f(x)]n)2dx

]1/.2

≤ C2

[
n ·m(L′

n) ·
∫
D

f(x)dx

]1/.2
,

it follows from (10) that

lim
n→∞

S1 = lim
n→∞

∫
D

[f(x)]n(T̃Dg)(x)dx =

∫
D

f(x)(T̃Dg)(x)dx. (17)
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For the integral S2 we also have

S2 =

∫
Dn

g(x)(TDΦ∗
n)(x)dx

=

∫
D

g(x)(TDΦ∗
n)(x)dx−

∫
L′

n

g(x)(TDΦ∗
n)(x)dx

=

∫
D

Φ∗
n(x)(T̃Dg)(x)dx−

∫
L′

n

g(x)(TDΦ∗
n)(x)dx = S

(1)
2 + S

(2)
2 .

The following estimates are valid:

|S(1)
2 | =

∣∣∣∣∫
D

Φ∗
n(x)(T̃Dg)(x)dx

∣∣∣∣ ≤ ∫
D

|Φ∗
n(x)(T̃Dg)(x)|dx

≤
∫
D

Φ∗
n(x)dx =

∫
D

Φn(x)dx = εn,

|S(2)
2 | =

∣∣∣∣∣
∫
L′

n

g(x)(TDΦ∗
n)(x)dx

∣∣∣∣∣ ≤
∫
L′

n

|(TDΦ∗
n)(x)|dx

≤
[
m(L′

n) ·
∫
D

|(TDΦ∗
n)(x)|2dx

]1/.2
≤ C2

[
m(L′

n) ·
∫
D

(Φ∗
n(x))

2dx

]1/.2
≤ C2

[
5d

2
n ·m(L′

n) ·
∫
D

Φ∗
n(x)dx

]1/.2
= C2

[
5d

2
n ·m(L′

n) · εn
]1/.2

.

Then it follows from (10) that
lim

n→∞
S2 = 0. (18)

To estimate the integral S3, we apply inequality (11). We have

|S3| =
∣∣∣∣∫

Dn

g(x)TD(Φn − Φ∗
n)(x)dx

∣∣∣∣ ≤ ∫
Dn

|g(x)TD(Φn − Φ∗
n)(x)|dx

≤
∫
Dn

|TD(Φn − Φ∗
n)(x)|dx ≤ 2 · 10dd2ωd∥Ω∥α · εn.

This implies the equality
lim

n→∞
S3 = 0. (19)

Now (15) follows from equalities (16), (17), (18) and (19).
Step 3. In this part we prove the equality

(A)

∫
D

g(x)(TDf)(x)dx = lim
n→∞

∫
Dn

g(x)(TDf)(x)dx. (20)

Consider the difference of integrals∫
Dn

g(x)(TDf)(x)dx−
∫
D

[g(x)(TDf)(x)]ndx
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= −
∫
L′

n

[g(x)(TDf)(x)]ndx

+

∫
Dn

{g(x)(TDf)(x)− [g(x)(TDf)(x)]n} dx = S(1) + S(2). (21)

From the inequality |S(1)| ≤ n ·m(L′
n) it follows that

lim
n→∞

S(1) = 0. (22)

Denote σn = {x ∈ D : |g(x)(TDf)(x)| > n}.
Since m{x ∈ D : |(TDf)(x)| > n} = o(1/n), n → ∞, we have m(σn) = o(1/n),

n → ∞. Using (11) and (14), we obtain∣∣∣S(2)
∣∣∣ ≤ ∫

Dn
∩

σn

|g(x)(TDf)(x)|dx ≤
∫
Dn

∩
σn

|(TDf)(x)|dx

≤
∫
σn

|(TD[f ]n)(x)|dx+

∫
σn

|(TDΦ∗
n)(x)|dx+

∫
Dn

|TD(Φn − Φ∗
n)(x)|dx

≤
[
m(σn) ·

∫
D

|(TD[f ]n)(x)|2dx
]1/.2

+

[
m(σn) ·

∫
D

|(TDΦ∗
n)(x)|2dx

]1/.2
+ 2 · 10dd2ωd∥Ω∥α · εn

≤ C2

[
m(σn) ·

∫
D

([f(x)]n)2dx

]1/.2
+C2

[
m(σn) ·

∫
D

(Φ∗
n(x))

2dx

]1/.2
+ 2 · 10dd2ωd∥Ω∥α · εn

≤ C2

[
n ·m(σn) ·

∫
D

f(x)dx

]1/.2

+C2

[
5d

2
n ·m(σn) ·

∫
D

Φ∗
n(x)dx

]1/.2
+ 2 · 10dd2ωd∥Ω∥α · εn.

It follows that

lim
n→∞

S(2) = 0. (23)

Now equality (20) follows from equalities (21), (22) and (23).
From the equalities (15) and (20) we obtain (8). ◀

Corollary. Let Ω be an even, homogeneous function of degree 0, continuously differen-
tiable on Rd \0 and with zero integral on the unit sphere. If f ∈ L1(D) and the boundary
of the domain D is a Lyapunov surface, then the function (TDf)(x) is A-integrable on
D.
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Proof. Indeed, if the boundary of D is a Lyapunov surface, then taking g(z) ≡ 1, we
see that the function (TDg)(x) is also bounded, and it follows from Theorem that the
function (TDf)(x) is A-integrable on D and

(A)

∫
D

(TDf)(x)dx =

∫
D

f(x)(TD1)(x)dx.

◀
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