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Abstract. In this article, we offer the M-Sturm Liouville problem for the diffusion
operator depending on initial condition. We obtain the representation of the solution of
the M-Sturm Liouville problem for diffusion operator through the M-Laplace transform.
The purpose of this article is to advantage demonstrate a more generalized version of
the representation of the solution of the Sturm Liouville problem for diffusion operator
in classical analysis.
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1. Motivation

Fractional calculus is any complex or real order theory of integrals and derivatives that
combines and also generalizes the concepts of integer order derivatives and -n-fold inte-
grals [9]. The opinion of this field first emerged in the 17th century in a letter from Leibniz
to L” Hospital [9]. Fractional calculus has been the focus of study for many mathemati-
cians [8]. Fractional diffusion equations have been examined in several different physical
situations [2]. These equations are broadly applicable because there are numerous sce-
narios in which they prove appropriate [2]. Tuan has been demonstrated that only a
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finite number of calculations are required in the limit to uniquely obtain the diffusion
coefficient of the one-dimensional fractional diffusion equation, given appropriate initial
distributions [11]. In physics, the problem of expressing the interactions among colliding
particles is of immense interest [14]. Jaulent and Jean have been discovered that two par-
ticles that do not rotate around their axis with the collision [6]. They have been accepted
that the scattering matrix s, indicated by S(F) and the bound energy, denoted by E,,
defined for all energies E > 0, were known exactly from collision tests [6]. Jaulent and
Jean first have been tried to find a radial stationary potential function V(x) for > 0
[6]. This potential function will give E, and S(E) E > 0 given by the radial s-wave
Schrodinger equation [6]. This equation is expressed in the center of mass of the two
particles and in the usual reduced variables as follows [6]:

y' +[E-V(X)y=0, >0.

The above equation reduces to the Klein Gordon s-wave equation [10]. The Klein-Gordon
equation is recognized as one of the most important in quantum field theory [13]. The
equation is commonly used to describe dispersive wave phenomena [13]. Consider the
following form of the Klein-Gordon equation [10]:

9 2 1 2
(ZE — e¢) — (;V - eZ)
' (r)+ [V2=2EV] ¢ (r) = —K*).

The Klein-Gordon equation reduces to the diffusion equation above [14]. Bas, has been
studied inverse nodal problem for the fractional diffusion equation [2]. Nabiev and Gu-
seinov have been studied inverse problems for the diffusion operator on a finite interval
[4]. Koyunbakan and Panakhov, have been proved that while ¢ potential function for the
diffusion operator in a finite range is determined in the range [%, 7T] a single spectrum is
sufficient to determine the potential function in the rest of the range [7]. In 2017, Sousa
and Oliveira found a parameter that satisfies the properties of the integer order calcu-
lus and an M-derivative containing the Mittag-Leffler function [12]. In later years, has
attracted the interest of many scientists, it has been the subject of various publications.
A unique method that facilitates the solutions of differential equations by transforming
them into algebraic equations is the Laplace transform method [9]. Jarad and Abdeljawad
in have been submitted the generalized Laplace transform for the generalized fractional
integrals and derivatives [5]. In this paper, we deal with the M-Sturm Liouville problem
for diffusion operator. Section 2 is the structure stone of M-derivative. Also this section,
we exhibit somewhat tools obligatory for our study, such as the M-derivative of spe-
cific functions, the M-Laplace transform. This method is used as an alternative method
for solving differential equations. The M-Laplace transform, is a powerful guiding tool
that facilitates the solution of problems in many field and provides practical information.
Section 3 is the main backbone of our study. We give the representation of the solution
of the M-Sturm Liouville problem for diffusion operator by the M-Laplace transform.
Moreover, the inimitableness of the solution has been proven here. Section 4 presents a
exhaustive discussion supported by graphs for diverse values of «, v, h and A. The recent
section includes considerable explanations for our main results.

U =m?y,
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2. General Properties of Method

Before coming to the main results, we offer some important definitions, theorems and
properties about the M-derivative.

Definition 1. [8]. Let f : [0,00] — R function be defined. The M-derivative for 0 <
B <1 is defined as follows

DY (1) = lim L (tEy (et=%)) — f(1)

e—0 £ ’

where E. (st’ﬁ) is the Mittag-Leffler function [13].

Theorem 1. [5]If 0<a <1, v>0,a,beR and f,g are a-differentiable functions
at a t > 0 point, then

g O ;
DS (fog) (t) = f' (g (t)) D3 g (1)

We present now a few definitions and theorems required for our main result.

1. DY (¢) =0, cis a constant;

2. D (f9) () = f (1) D3y g(t)+ g(t) DR f (1)
5. Do (£) (1) = SO 10D o)

4

Theorem 2. [3] M-derivative of some important functions are as follows:

11—«
i. DY (sin(ct) ) = %, ceR;
g ) t!~“sin(ct .
. DY (cos(ct) ) = —%, ceR;
1—a bt
iii. Dy (") = Yorsys beR;
; oy (1k) _ _kth—“
Z’U.DM (t)—m, k'ER
Also, note that the following functions in terms of M-derivative [2]:
a,y L(y+1)t L(y+1D)t>
° DM (e o ) = (e a N
o DY (sin szl)ta = (cos 7F(721)ta ;
o DY (COSW ) - _ (sinw )

Definition 2. [3] n-order linear non-homogeneous differential equation in terms of the
M-derivative is given as

agDhS Y +ay DTV y 4 a1 DYy + any = (t),

where 0 < a <1, ag #0, D)y = DY DY/ ... DY/ and ag, ay,..., a, are
constants or variables.

If the function 1y is n-times differentiable, there are n-independent solutions
Y1, Y2,. .., Yn for the homogeneous differential equation

aoD\ Ty + alDS\Z_l)a’vy 4o+ a1 DYy + any = 0.
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Now, we introduce the M-Laplace transform in order to solve some kind of differential
equations with arbitrary order. We representation the M-Laplace transform of some
important functions.

Definition 3. [1] Let f : [a,00) = R, a € R, v >0 and 0 < p < 1, then the M-Laplace
transform is defined as below

L D(—a)P

Lo AT @) (s) = F, (s) :F(7+1)/00 e @) - (1)

where (t — a)?~ " dt = d,t.

We define the M-Laplace transform of certain functions [1]:

k P k/p
> Lo {5} (s) = F(H”)(Qg“)) 5> 0, k eR;
s P
. 3
> L, {sm (bF('y—i—l) %) }(5): #7 beR:
> L, {cos (bF(v—i—l)%) }(s): ﬁ, beR;
P cl(y+1) &
> L, {F (y+1)Se B } (s) = (Sjc)Q, ceR.

Theorem 3. [1] Let f and g are continuous and real valued functions. Also, both have
Laplace transform such that L, {f(t)} (s) = F3., (s), L5 {g(t)}(s) =G, (s) and
Fo . (s) =G, (s). Then f(t)=g(t).

Theorem 4. [1] Assume that f :[a,00) = R, a € R, 0< p <1 and for t >ty there

(t-a)?
exist the constants M, b, to such that |f(t)] < Ml OFD 7 Then

Lo ADRKT (0} = sLE S (1)} = f (a)

and in a general form we write
o ADLPT F W} =528, AP (0 =571 f (@) — 572D £ (a)

—2)p, —1)p,
—---—SDXL‘ )P’Yf(a)_DSCl )p’Yf(a).

Definition 4. [1] Let f(t) and g (t) are piecewise continuous functions and have

exponential order, then the convolution of f and g in frame of the M-derivative is
defined by

p—1

(fxg)@)=T(v+ 1)/ F(r)glar(t—a) — (r—a))" (r—a) dr. (2

Theorem 5. [1] Let f,g:[a,00) 2 R, a €R, 0<p <1, v>0, s>0 and there
exist f (t) and g (t) such that F, . (s) =L, {f®#)} and G} (s)=L; {g(t)}, then
we have the following relation

Lo A *g} ()= F5 L (s) Gy (s),

where (f xg) is the convolution of f and g.
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3. Main Results

In the current part, our aim is to show that the M-Sturm Liouville problem for diffusion
operator more general version of the Sturm Liouville problem for diffusion operator in
classical analysis.

In this section, we consider the M-Sturm Liouville problem for diffusion operator

— DDy (2) + (g (2) + 20p (2)]y () = Ny (),

where the function ¢ (z) real and continuous ¢(x) and p(x) also 0 < o < 1. Considering
the basic opinion above, we offer the following significant theorem:

Theorem 6. We consider the representation of the solution M- Sturm Liouville problem
for diffusion operator

— DYDYy (@) + g (2) + 22 (@) y (2) = Ny (@) ®)

where the initial conditions are y(0,X) =1, D%y (0,A) = —h and h = —cot «,

«

v =cos (A (40 2 ) = Fain (G D)+

+M /O sin (AF (y+1) (% - f)) (4 (7) + 229 ()] y (1, A) dar.

o

Proof. Let is get the representation of solution the M- Sturm Liouville problem for
diffusion operator by using the M-Laplace transform (3). If we apply the M-Laplace
transform to both sides of problem (3),

—LOADY DYy ()} + L2 {[a () + 22 (2)]y (2)} = L2 { Ny ()} (4)

it becomes. By performing the necessary operations

—£2{ D3y (@)} = = [*Yan (5) = sy (0) = D3y (0,N)] - (5)

If we write the initial conditions y (0,\) = 1, D3y (0,A) = —h and h = —cota in
equation (5),

—£o D3y (1)} =~V (5) +5— b (6)

is obtained. Using the formula (1), we write it as

Oo_sf(wnw“
L9 {lg (@) +22p ()] y (2)} = I' (v + 1)/ e g (@) + 20 (2)]y (2) daw. (7)
0
It is written
£ {32y (@)} = XY o (5 )
in format. Substitute equations (6), (7), (8) in equation (4) to get
RS GRS

[~5Yay (5) +s—h] + ' (v +1) /0 e o g(@) + 22 ()] y (v) d o = NYa,y (5),
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Yoo () [+ M) =s—h+T(y+1) / e ) 4 2 (@) y () doz. (9)

Dividing both sides of (9) by [s* + A?], we get
s h I'(v+1)

SR GRS
Ya,’y (S) = 22 ¥ 52 - A2 + 52 22 ¥ 52 A € > [q (l‘) + 2>‘p (l‘)] Y (l‘) dal‘.
(10)
Applying the inverse M-Laplace transform to both sides of (10) we get
-1 _ -1 S -1 h
ﬁa,'y {YOLK)’ (S)} - Ea,'y {m} - Eaﬁ {m} +
1 [T (y+1) [ _ ratyae
b (B [T o e @ly@ae).
A2 +5s2
Using the formula of ‘C;lv {ﬁ} =cos (bI" (v+1) %) , we get
1 s x
— = r 1)— ). 12
cab {sef —os (proen S (12)
Using the formula of L7, {ﬁ} = sin (b (y+1) %) , we obtain
h h x®
—1 o .
The L}, {1;\(27;;? 15 s TR [q (x) 4+ 2Mp (2)] y (x) daac} expression can be written
in
rov+1 ¢

sin (AF (y+1) %) *[q(x) +2Mp ()] y (z, X ) =

SLOED P (v e+ (5 - 2) )+ 200y (N 10

by using the convolution property in (2). If we substitute the expressions (12), (13), (14)
in equation (11), we get the representation of the solution in form

«

e R S R G

(0% (0%

05D i (A6 0) (5= 5) )o@+ 200y Ndar. (15)

<

4. Visual Results and Discussions

In this part, we deal with diverse data of the M-Sturm Liouville problem for diffusion
operator. In the light of the observations made, we point out that it is the general version
of the classical Sturm Liouville problem for diffusion operator. The graphs below clearly
show us the behavioral representation of the solution is obtained for this purpose. We
ensure details characterization supported by graphs for different values of «, v, h and A.
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Fig. 1. Representation of solution for various v values.
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Fig. 2. Equation (15) image for two different A values.
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Fig. 4. Appearance of the solution as o approaches 1.
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Fig. 6. Representation of solution in classical analysis.

The first figure is examined for diverse values of « in equation (15). A =2, a = 0.2,
h=1,v=1,v=2and v = 3 values by using the representation of the solution M-Sturm
Liouville problem for diffusion operator shape is appeared in detail. The second figure
is followed the image of the solution M-Sturm Liouville problem for diffusion operator
in equation (15), taking into account the values of A = 3, A =4, v = 2, a = 0.5 and
h = 1.5. In the third figure, is obtained in the light of the values A =5, v =3, a = 0.6,
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h=6,h=06.5, h =7 and h = 8. In the fourth figure, the M-Sturm Liouville problem
for diffusion operator figure is scrutinized by recording the A\ = 2.5, v = 4, h = 4.5,
a = 0.8 and o = 0.9 in equation (15). In the fifth figure, the appearance of the M-Sturm
Liouville problem for the diffusion operator is observed by recording the dates A = 1,
vy=1,h=4,a0=0.8,a=0.9, a =0.95 and a = 1 in equation (15). In the sixth figure,
there is recorded the figure of the M-Sturm Liouville problem for diffusion operator
representation of solution with the dates A=1,y =1, h =1 and o = 1 in equation (15).
Also, sixth figure coincides with the representation of the solution in classical analysis
for a = 1.

5. Conclusions

In our study, is examined the M-Sturm Liouville problem for diffusion operator, which is
very important in mathematics. By revising the M-Sturm Liouville problem for diffusion
operator, which is a powerful derivative in fractional analysis, is obtained the represen-
tation of the solution with the help of M-Laplace transform. The representation of this
unique solution is observed in the light of various data through Matlab. The resulting
solution representation has proven to be a more general version of classical analysis.
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