ON THE BOUNDEDNESS OF THE RESOLVENT OF THE OPERATOR GENERATED BY PARTIAL OPERATOR-DIFFERENTIAL EXPRESSIONS OF HIGHER ORDER IN HILBERT SPACE

H.I. ASLANOV
Received: date / Revised: date / Accepted: date

In memory of M. G. Gasymov on his 85th birthday

Abstract

In the paper we consider the boundedness of the resolvent of a differential operator generated by partial differential-operator expression higher even order in Hilbert space. The main theorem on the boundedness of the operator $(L-\lambda E)^{-1}$ for rather large values of the parameter lying on some ray $\lambda \in l,|\lambda| \geq \lambda_{0}$ was proved.

Keywords: Hilbert space, operator-differential equation, resolvent, Fourier transformation, sef-adjoint operator, completely continuous operator, compactness, positive-definite operator
Mathematics Subject Classification (2020): 35B40, 35R20, 47F05

1. Introduction

Let $H_{0}, H_{1}, \ldots H_{2 m}$ be Hilbert spaces, $H_{i+1} \subset H_{i}, i=0,1,2, \ldots, 2 m-1$, where all embeddings are compact .

Let us consider the differential expression

$$
L(x, D) u=\sum_{|\alpha| \leq 2 m} A_{\alpha}(x) D^{\alpha} u, \quad x \in \mathbb{R}^{n}
$$

where $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right),|\alpha|=\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}, D^{\alpha}=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \ldots \partial x_{n}^{\alpha_{n}}}$. The function $u(x) \in H_{2 m}$ is such that $D^{\alpha} u \in H_{2 m-|\alpha|}$. It is assumed that for each $x \in \mathbb{R}^{n}, A_{\alpha}(x) \neq$ $0: H_{2 m-|\alpha|} \rightarrow H_{0}$ are bounded operators. $A_{0}(x)=A_{0}+\gamma(x)$, where $A_{0}: H_{0} \rightarrow H_{0}$ is such a positive definite self-adjint operator that A_{0}^{-1} is completely continuous. The complex-valued function $\gamma(x)$ is assumed to be measurable and locally bounded.

[^0]
2. Estimation of the Resolvent of the Operator $L(x, D)$

Before finding our main goal, the estimation of the resolvent of the operator $L(x, D)$ we formulate the conditions to which the coefficients of the operator $L(x, D)$ must satisfy in future.

We denote

$$
R_{0}(x, \xi)=\left[\sum_{|\alpha|=2 m} A_{\alpha}(x)(i \xi)^{\alpha}\right]^{-1,}, \quad \xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right), \quad \xi^{\alpha}=\xi_{1}^{\alpha_{1}}, \xi_{2}^{\alpha_{2}}, \ldots, \xi_{n 1}^{\alpha_{n}}
$$

Assume that
I . $R_{0}(x, \xi)$ for all $\xi \in \mathbb{R}^{n} \backslash\{0\}$ is a bounded operator $H_{0} \rightarrow H_{2 m}$, moreover

$$
\sum_{i=0}^{2 m}|\xi|^{i}\left\|R_{0}\right\|_{H_{0} \rightarrow H_{2 m-i}} \leq \delta_{1},
$$

where $\delta_{1}=$ const is independent of x, ξ.
II. There exists such a ray $l=\{\lambda: \arg \lambda=\beta\}$ of a complex plane λ that the operator $R(x, \xi, \lambda)=\left[\sum_{|\alpha| \leq 2 m} A_{\alpha}(x)(i \xi)^{\alpha}-\lambda E\right]^{-1,}$ is a bounded operator $H_{0} \rightarrow H_{2 m}$ for $\lambda \in l$, $\xi \in \mathbb{R}^{n},|x|>c$ and

$$
(|\gamma(x)|+|\lambda|)\left\|R_{0}\right\|_{H_{0} \rightarrow H_{2 m}}+\sum_{i<2 m}|\xi|^{2 m-i}\left\|R_{0}\right\|_{H_{0} \rightarrow H_{2 m-i}} \leq \delta_{2}
$$

III. The quantities $\sup _{\left\|x-x_{0}\right\| \leq h}\left\|A_{\alpha}(x)-A_{\alpha}\left(x_{0}\right)\right\|, \sup \left|\frac{\gamma(x)-\gamma\left(x_{0}\right)}{\gamma\left(x_{0}\right)}\right|$ tend to zero as $h \rightarrow 0$ uniformly with respect to $n, x_{0},|\alpha|=2 m$.
IV. $\sum_{0<|\alpha| \leq 2 m}\left\|A_{\alpha}(x)\right\|<\delta_{3}$.

Denote by \tilde{H}_{i} a space with a scalar product

$$
(f, g)_{\tilde{H}_{i}}=\int_{\mathbb{R}^{n}}(f(x), g(x))_{H_{i}} d x, \quad f, g \in H_{i}, \quad i=0,1, \ldots, 2 m
$$

We have the following theorem.
Theorem 1. Let conditions I-IV be fulfilled, and

$$
\sum_{|\alpha| \leq 2 m} \int_{\mathbb{R}^{n}}\left\|D^{\alpha} u\right\|_{H_{0}}^{2} d x+\int_{\mathbb{R}^{n}} \gamma^{2}(x)\|u\|_{H_{0}}^{2} d x<\infty
$$

for $\lambda \in l,|\lambda| \geq \lambda_{0}$. Then

$$
\sum_{|\alpha| \leq 2 m}\left\|D^{\alpha} u\right\|_{H_{0}}^{2} d x \leq c_{1}\|(L-\lambda E) u\|_{H_{0}}^{2}
$$

where $c_{1}=$ const, is independent of λ.

Proof. Denote $(L-\lambda E) u=f$. Divide \mathbb{R}^{n} into the system of cubes with such ribs h that combination of their interiors coincide with \mathbb{R}^{n} and each point is overlapped by finitely many cubes. Let S_{i} be any of the cubes of this system, P_{i} be the center of S_{i}. Let us consider partition of unity

$$
\sum_{i=1}^{\infty} \theta_{i}(x) \equiv 1, \quad \theta_{i}(x) \in \stackrel{\circ}{C}^{\infty}\left(S_{i}\right)
$$

It is easy to see that

$$
\begin{equation*}
(L-\lambda E) \theta_{i}(x) u=f_{i} \tag{1}
\end{equation*}
$$

where

$$
f_{i}=\sum_{\substack{0<|\alpha| \leq 2 m \\\left|\alpha^{\prime}\right|>0, \alpha^{\prime}+\beta^{\prime}=\alpha}} A_{\alpha}(x) C_{\alpha^{\prime} \beta^{\prime}} D^{\alpha^{\prime}} \theta_{i}(x) D^{\beta^{\prime}} u+f \theta_{i}(x), \quad C_{\alpha^{\prime} \beta^{\prime}}=\text { const. }
$$

Hence it follows

$$
\begin{align*}
A_{0}\left(P_{i}\right) \theta_{i} u+ & \sum_{|\alpha|=2 m} A_{\alpha}\left(P_{i}\right) D^{\alpha^{\prime}} \theta_{i} u-\lambda \theta_{i} u=f_{i}-\sum_{|\alpha|<2 m} A_{\alpha}(x) D^{\alpha^{\prime}} \theta_{i} u- \\
& -\sum_{|\alpha|=2 m}\left(A_{\alpha}(x)-A_{\alpha}\left(P_{i}\right)\right) D^{\alpha^{\prime}} \theta_{i} u=F_{i}(x) \tag{2}
\end{align*}
$$

Denote $\theta_{i} u=v_{i}$. To the both sides of equality (2) we apply Fourier transform with respect to x. It can be done since $v_{i}(x)$ has a compact support. As a result we obtain:

$$
\left[A_{0}\left(P_{i}\right)+\sum_{|\alpha|=m} A_{\alpha}\left(P_{i}\right)(i \xi)^{\alpha}-\lambda\right] \tilde{v}_{i}(\lambda)=\tilde{F}_{i}(\lambda)
$$

From assumption II for $\lambda \in l$ we have:

$$
\begin{aligned}
& \left(\left|\gamma\left(P_{i}\right)\right|+|\lambda|\right)\left\|\tilde{v}_{i}(\lambda)\right\|_{H_{0}}+\left\|\tilde{v}_{i}(\lambda)\right\|_{H_{2 m}} \leq C_{2}\left\|\tilde{F}_{i}(\lambda)\right\|_{H_{0}} \leq \\
& \quad \leq C_{3}\left\|\tilde{f}_{i}(\lambda)\right\|_{H_{0}}+C_{3}\left\|\tilde{v}_{i}(\lambda)\right\|_{H_{2 m-1}}+\varepsilon(h)\left\|\tilde{v}_{i}(\lambda)\right\|_{H_{2 m}}
\end{aligned}
$$

where $\varepsilon(h) \rightarrow 0$ as $h \rightarrow 0$.
Since the embedding's $H_{i} \subset H_{i-1}$ are compact we have the following estimate:

$$
\begin{equation*}
\|w\|_{H_{2 m-1}} \leq \varepsilon\|w\|_{H_{2 m}}+C(\varepsilon)\|W\|_{H_{0}} \text { for all } \varepsilon>0 \tag{3}
\end{equation*}
$$

Having chosen $\varepsilon=\frac{1}{2} \varepsilon_{3}$, for rather small h from (3) we obtain

$$
\left(\left|\gamma\left(P_{i}\right)\right|+|\lambda|\right)\left\|\tilde{v}_{i}(\lambda)\right\|_{H_{0}}+\left\|\tilde{v}_{i}(\lambda)\right\|_{H_{2 m}} \leq C_{4}\left\|\tilde{f}_{i}(\lambda)\right\|_{H_{0}}
$$

if is $|\lambda|$ rather large.

Hence and from the Parseval equality we have:

$$
\left(\left|\gamma^{2}\left(P_{i}\right)\right|+|\lambda|^{2}\right) \int_{S_{i}}\left\|v_{i}\right\|_{H_{0}}^{2} d x+\int_{S_{i}}\left\|v_{i}\right\|_{H_{2 m}}^{2} d x \leq C \int_{S_{i}}\left\|f_{i}\right\|_{H_{0}}^{2} d x
$$

This inequality yields:

$$
\begin{align*}
& \left(|\gamma(x)|^{2}+|\lambda|^{2}\right)\left\|v_{i}(\lambda)\right\|_{H_{0}}^{2} d x+\int_{S_{i}}\left\|v_{i}(\lambda)\right\|_{H_{2 m}}^{2} d x \leq \\
& \quad \leq C(h) \int_{S_{i}}\|u\|_{H_{2 m-1}}^{2} d x+c \int_{S_{i}}\|f\|_{H_{0}}^{2} d x . \tag{4}
\end{align*}
$$

We sum inequality (4) over all $i=1,2, \ldots$.
As a result we obtain:

$$
\begin{gather*}
\int_{\mathbb{R}^{n}}\left(|\gamma(x)|^{2}+|\lambda|^{2}\right)\|u\|_{H_{0}}^{2} d x+\int_{\mathbb{R}^{n}}\|u(x)\|_{H_{2 m}}^{2} d x \leq \\
\quad \leq c(h) \int_{\mathbb{R}^{n}}\|u\|_{H_{2 m-1}}^{2} d x+c \int_{\mathbb{R}^{n}}\|f\|_{H_{0}}^{2} d x . \tag{5}
\end{gather*}
$$

To estimate the first addend in the right hand side of inequality (5), we use inequality (3)

As a result, having taken in (3) $\varepsilon>0$ so that $\varepsilon \cdot c(h)=\frac{1}{2}$, we obtain

$$
\begin{gather*}
\int_{\mathbb{R}^{n}}|\gamma(x)|^{2}+|\lambda|^{2}\|u\|_{H_{0}}^{2} d x+\int_{\mathbb{R}^{n}}\|u(x)\|_{H_{2 m}}^{2} d x \leq \\
\quad \leq c \int_{\mathbb{R}^{n}}\|f\|_{H_{0}}^{2} d x+c(\varepsilon, h) \int_{\mathbb{R}^{n}}\|u\|_{H_{0}}^{2} d x \tag{6}
\end{gather*}
$$

If $|\lambda|^{2}>2 c(\varepsilon, h)$, then the required inequality (1) follows from (6).
Theorem 2. If the conditions of Theorem 1 are fulfilled, then the operator $(L-\lambda E)^{-1}$: $H_{0} \rightarrow H_{0}$ is a bounded operator for each $\lambda \in l,|\lambda| \geq \lambda_{0}$.

Proof. To prove the theorem, it suffices to prove the existence of the solution to the equation

$$
L(x, D) u-\lambda u=f(x) \text { for any } f(x) \in H_{0}
$$

Let $\theta_{i}(x)$ be the same partition of unity that was used when proving Theorem 1, $f_{i}=\theta_{i} f$.

Let us consider the equation

$$
\sum_{|\alpha|=2 m} A_{\alpha}\left(P_{i}\right) D^{\alpha} w_{i}+A_{0}\left(P_{i}\right) w_{i}=f_{i}(x)
$$

Its solution exists and can be determined by applying Fourier transform by the following formula:

$$
\tilde{w}_{i}=\left[\sum_{|\alpha|=2 m} A_{\alpha}\left(P_{i}\right)(i \xi)^{\alpha}+A_{0}\left(P_{i}\right)-\lambda\right]^{-1} \tilde{f}_{i}(\lambda)
$$

Let $\sigma_{i}(x)$ be such a partition of unity that $\sigma_{i}(x) \psi_{i}(x) \equiv \psi_{i}$. We determine the function

$$
w(x)=\sum_{i=1}^{\infty} \sigma_{i}(x) w_{i}(x)=L(f)
$$

Then we have:

$$
\begin{align*}
& (L-\lambda E) w=\sum_{i=1}^{\infty}\left[\sum_{|\alpha|=2 m} \sigma_{i}(x) A_{\alpha}(x) D^{\alpha} w_{i}+\sum_{\substack{0<|\alpha| \leq 2 m \\
\left|\alpha^{\prime}\right|>0, \alpha^{\prime}+\beta^{\prime}=\alpha}} d_{\alpha^{\prime} \beta^{\prime}} A_{\alpha}(x) D^{\beta^{\prime}} w_{i}+\right. \\
& \left.+A_{0}(x) \sigma_{i} w_{i}-\lambda \sigma_{i}(x) w_{i}\right]= \\
& =\sum_{i=1}^{\infty}\left[\sigma_{i} f_{i}+\sum_{|\alpha|=2 m} \sigma_{i}\left[A_{\alpha}(x)-A_{\alpha}\left(x_{i}\right)\right] D^{\alpha} w_{i}+\right. \\
& \left.+\sum_{\alpha^{\prime}+\beta^{\prime}=\alpha} A_{\alpha}(x) d_{\alpha^{\prime} \beta^{\prime}}(x) D^{\beta^{\prime}} w_{i}-\left(A_{0}(x)-A_{0}\left(x_{i}\right)\right) \sigma_{i} w_{i}\right]= \\
& \quad=f+\sum_{i=1}^{\infty}\left[\sum_{|\alpha|=2 m} \sigma_{i}(x)\left[A_{\alpha}(x)-A_{\alpha}\left(x_{0}\right)\right] D^{\alpha} w_{i}+\right. \\
& \left.+\sum_{\alpha^{\prime}+\beta^{\prime}=\alpha} A_{\alpha}(x) d_{\alpha^{\prime} \beta^{\prime}}(x) D^{\beta^{\prime}} w_{i}+\left(A_{0}(x)-A_{0}\left(x_{0}\right)\right) \sigma_{i} w_{i}\right]=f+T f . \tag{7}
\end{align*}
$$

Here $d_{\alpha^{\prime} \beta^{\prime}}(x)$ are infinitely differentiable functions with a support in S_{i}, T is an operator $H_{0} \rightarrow H_{0}$. Estimate $\|T\|$. For $|\alpha|=2 m$ we have

$$
\left\|\sigma_{i}(x)\left(A_{\alpha}(x)-A_{\alpha}\left(x_{0}\right)\right) D^{\alpha} w_{i}\right\|_{H_{0}} \leq \varepsilon \int_{S_{i}}\left\|D^{\alpha} w_{i}\right\|_{H_{0}}^{2} d x
$$

If h is rather small, hen condition III yields

$$
(|\gamma(x)|+|\lambda|)\|w\|_{H_{0}}+\|w\|_{H_{2 m}} \leq c\|f\|_{H_{0}} .
$$

This means that

$$
\begin{equation*}
\left\|\sigma_{i}(x)\left[A_{\alpha}(x)-A_{\alpha}\left(x_{i}\right)\right] D^{\alpha} w_{i}\right\|_{H_{0}} \leq c \varepsilon\|f\|_{H_{0}} \tag{8}
\end{equation*}
$$

Furthermore,

$$
\begin{gather*}
\left\|A_{\alpha}(x) d_{\alpha^{\prime} \beta^{\prime}}(x) D^{\beta^{\prime}} w_{i}\right\|_{H_{0}} \leq c\|w\|_{H_{2 m-1}} \leq \\
\leq \varepsilon\|w\|_{H_{2 m}}+\|w\|_{H_{0}} \leq \varepsilon\|f\|_{H_{0}}+(1+|\lambda|)^{-1} c_{\varepsilon}\left\|f_{i}\right\|_{H_{0}} . \tag{9}
\end{gather*}
$$

Finally we obtain

$$
\begin{equation*}
\left\|A_{0}(x)-A_{0}\left(x_{i}\right) \sigma_{i} w_{i}\right\|_{H_{0}} \leq c \varepsilon\left\|f_{i}\right\|_{H_{0}} \tag{10}
\end{equation*}
$$

From (8)-(10) it follows that $\|T\| \leq \frac{1}{2}$ if h is rather small.
So, $(L-\lambda E) w=f+T f$.
By the Banach theorem there exists such φ that $T \varphi+\varphi=f$.
Hence we obtain that $(L-\lambda E) \varphi=T \varphi+\varphi=f$.
The, the solvability of equation (7) is proved.
We observe that Cauchy problem and existence of solutions of boundary value problems and asymptotic properties of solutions for ordinary operator-differential equations was studying by M.G. Gasymov [6], Yu.A. Dubinskii [5], B.A. Plamenevskii [10], S.S. Mirzoev [9], A.A. Shkalikov [13] and others. In comporve with the ordinary operatordifferential equations the partial operator-differential equations was small investigated. In this direction we can refer to the works of S. Agmon, A. Douglis, L. Nirenberg [1], G.I. Aslanov [2]-[4], A.A. Shkalikov [13], V.B. Shakhmurov [11], V.B. Shakhmurov and Azad A. Babaev [12] and others. In general the studying of the solutions of operator-differential equations we refer to detail to fundamental monographies S.G. Krein [7], J.L. Lions and E. Magenes [8] and S.Ya. Yakubov [14].

References

1. Agmon S., Douglis A., Nirenberg L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Commun. Pure Appl. Math., I, 1959, 12 (4), pp. 623-727; II, 1964, 17 (1), pp. 35-92.
2. Aslanov G.I. On the solubility and asymptotic behaviour of solutions of differential equations in Hilbert space. International Conference on Differential Equations and Related Questions (15th joint session of the Petrovskii Seminar and the Moscow Mathematical Society, 19-22 January 1993), Russ. Math. Surv., 1993, 48 (4), pp. 190-191.
3. Aslanov G.I. Differential equations with operator coefficients in Hilbert spaces. Math. Notes, 1993, 53 (3), pp. 351-353.
4. Aslanov G.I. Differential equations with unbounded operator coefficients in Hilbert spaces. Dokl. Math., 1995, 50 (1), pp. 5-9.
5. Dubinskii Yu.A. On some differential-operator equations of arbitrary order. Math. USSR-Sb., 1973, 19 (1), pp. 1-21.
6. Gasymov M.G. The solvability of boundary value problems for a class of operatordifferential equations. Dokl. Akad. Nauk SSSR, 1977, 235 (3), pp. 505-508 (in Russian).
7. Krein S.G. Linear Differential Equations in Banach Space. Amer. Math. Soc., Providence, R.I., 1971.
8. Lions J.L., Magenes E. Non-Homogeneous Boundary Value Problems and Applications. Dunod, Paris, 1968; Mir, Moscow, 1971; Springer, Berlin, 1972.
9. Mirzoev S.S. Conditions for the well-defined solvability of boundary-value problems for operator differential equations. Dokl. Akad. Nauk SSSRR, 1983, 273 (2), pp. 292-295 (in Russian).
10. Plamenevskii B.A. On the existence and asymptotics of solutions of differential equations with unbounded operator coefficients in a Banach space. Math. USSR-Izv., 1972, 6 (6), pp. 1327-1379.
11. Shakhmurov V.B. Coercive boundary value problems for strongly degenerate operator-differential equations. Dokl. Akad. Nauk SSSR, 1986, 290 (3), pp. 553-556 (in Russian).
12. Shakhmurov V.B., Babaev Azad A. Coercive problems for an equation with parameters. Dokl. Akad. Nauk SSSR, 1990, 315 (1), pp. 37-40 (in Russian).
13. Shkalikov A.A. Elliptic equations in Hilbert space and associated spectral problems. Trudy Sem. Petrovsk., 1989, (14), pp. 140-224 (in Russian).
14. Yakubov S.Ya. Linear Differential-Operator Equations and Their Applications. Elm, Baku, 1985 (in Russian).

[^0]: Hamidulla I. Aslanov
 Institute of Mathematics and Mechanics, Baku, Azerbaijan;
 Baku Engineering University, Baku, Azerbaijan
 E-mail: aslanov.50@mail.ru

