
Baku Mathematical Journal
202X, Vol. XX, No X, PP. XX-XX
https://doi.org/10.32010/j.bmj.202X.XX

ON THE BOUNDEDNESS OF THE RESOLVENT OF
THE OPERATOR GENERATED BY PARTIAL

OPERATOR-DIFFERENTIAL EXPRESSIONS OF
HIGHER ORDER IN HILBERT SPACE

H.I. ASLANOV

Received: date / Revised: date / Accepted: date

In memory of M. G. Gasymov on his 85th birthday

Abstract. In the paper we consider the boundedness of the resolvent of a differential
operator generated by partial differential-operator expression higher even order in Hilbert
space. The main theorem on the boundedness of the operator (L−λE)−1 for rather large
values of the parameter lying on some ray λ ∈ l, |λ| ≥ λ0 was proved.
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1. Introduction

Let H0,H1, ...H2m be Hilbert spaces, Hi+1 ⊂ Hi, i = 0, 1, 2, ...., 2m−1, where all embed-
dings are compact .

Let us consider the differential expression

L(x,D)u =
∑

|α|≤2m

Aα(x)D
αu, x ∈ Rn,

where α = (α1, α2, ..., αn), |α| = α1 + α2 + ... + αn, D
α = ∂|α|

∂x
α1
1 ∂x

α2
2 ...∂xαn

n
.The function

u(x) ∈ H2m is such that Dαu ∈ H2m−|α|. It is assumed that for each x ∈ Rn, Aα(x) ̸=
0 : H2m−|α| → H0 are bounded operators. A0(x) = A0 + γ(x), where A0 : H0 → H0

is such a positive definite self-adjint operator that A−1
0 is completely continuous. The

complex-valued function γ(x) is assumed to be measurable and locally bounded.
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2. Estimation of the Resolvent of the Operator L(x,D)

Before finding our main goal, the estimation of the resolvent of the operator L(x,D) we
formulate the conditions to which the coefficients of the operator L(x,D) must satisfy in
future.

We denote

R0(x, ξ) =

 ∑
|α|=2m

Aα(x)(iξ)
α

−1,

, ξ = (ξ1, ξ2, ..., ξn) , ξα = ξα1
1 , ξα2

2 , ..., ξαn
n1 .

Assume that
I . R0(x, ξ) for all ξ ∈ Rn\{0} is a bounded operator H0 → H2m, moreover

2m∑
i=0

|ξ|i ∥R0∥H0→H2m−i
≤ δ1,

where δ1 = const is independent of x, ξ.
II. There exists such a ray l = {λ : arg λ = β} of a complex plane λ that the operator

R(x, ξ, λ) =

[ ∑
|α|≤2m

Aα(x)(iξ)
α − λE

]−1,

is a bounded operator H0 → H2m for λ ∈ l,

ξ ∈ Rn, |x| > c and

(|γ(x)|+ |λ|) ∥R0∥H0→H2m
+

∑
i<2m

|ξ|2m−i ∥R0∥H0→H2m−i
≤ δ2.

III. The quantities sup
∥x−x0∥≤h

∥Aα(x)−Aα(x0)∥ , sup
∣∣∣γ(x)−γ(x0)

γ(x0)

∣∣∣ tend to zero as h→ 0

uniformly with respect to n, x0, |α| = 2m.
IV.

∑
0<|α|≤2m

∥Aα(x)∥ < δ3.

Denote by H̃i a space with a scalar product

(f, g)H̃i
=

∫
Rn

(f(x), g(x))Hi
dx, f, g ∈ Hi, i = 0, 1, ..., 2m.

We have the following theorem.

Theorem 1. Let conditions I-IV be fulfilled, and∑
|α|≤2m

∫
Rn

∥Dαu∥2H0
dx+

∫
Rn

γ2(x) ∥u∥2H0
dx <∞

for λ ∈ l, |λ| ≥ λ0. Then∑
|α|≤2m

∥Dαu∥2H0
dx ≤ c1 ∥(L− λE)u∥2H0

,

where c1 = const, is independent of λ.
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Proof. Denote (L− λE)u = f . Divide Rn into the system of cubes with such ribs h that
combination of their interiors coincide with Rn and each point is overlapped by finitely
many cubes. Let Si be any of the cubes of this system, Pi be the center of Si. Let us
consider partition of unity

∞∑
i=1

θi(x) ≡ 1, θi(x) ∈
◦
C∞(Si).

It is easy to see that
(L− λE) θi(x)u = fi, (1)

where

fi =
∑

0<|α|≤2m
|α′|>0,α′+β′=α

Aα(x)Cα′β′Dα′
θi(x)D

β′
u+ fθi(x), Cα′β′ = const.

Hence it follows

A0(Pi)θiu+
∑

|α|=2m

Aα(Pi)D
α′
θiu− λθiu = fi −

∑
|α|<2m

Aα(x)D
α′
θiu−

−
∑

|α|=2m

(Aα(x)−Aα(Pi))D
α′
θiu = Fi(x). (2)

Denote θiu = vi. To the both sides of equality (2) we apply Fourier transform with
respect to x. It can be done since vi(x) has a compact support. As a result we obtain:A0(Pi) +

∑
|α|=m

Aα(Pi)(iξ)
α − λ

 ṽi(λ) = F̃i(λ).

From assumption II for λ ∈ l we have:

(|γ(Pi)|+ |λ|) ∥ṽi(λ)∥H0
+ ∥ṽi(λ)∥H2m

≤ C2

∥∥∥F̃i(λ)
∥∥∥
H0

≤

≤ C3

∥∥∥f̃i(λ)∥∥∥
H0

+ C3 ∥ṽi(λ)∥H2m−1
+ ε(h) ∥ṽi(λ)∥H2m

,

where ε(h) → 0 as h→ 0.
Since the embedding’s Hi ⊂ Hi−1 are compact we have the following estimate:

∥w∥H2m−1
≤ ε ∥w∥H2m

+ C(ε) ∥W∥H0
for all ε > 0. (3)

Having chosen ε = 1
2ε3, for rather small h from (3) we obtain

(|γ(Pi)|+ |λ|) ∥ṽi(λ)∥H0
+ ∥ṽi(λ)∥H2m

≤ C4

∥∥∥f̃i(λ)∥∥∥
H0

,

if is |λ| rather large.



6 On the boundedness of the resolvent of the operator

Hence and from the Parseval equality we have:(∣∣γ2(Pi)
∣∣+ |λ|2

)∫
Si

∥vi∥2H0
dx+

∫
Si

∥vi∥2H2m
dx ≤ C

∫
Si

∥fi∥2H0
dx.

This inequality yields:(
|γ(x)|2 + |λ|2

)
∥vi(λ)∥2H0

dx+

∫
Si

∥vi(λ)∥2
H2m

dx ≤

≤ C(h)

∫
Si

∥u∥2
H2m−1

dx+ c

∫
Si

∥f∥2
H0
dx. (4)

We sum inequality (4) over all i = 1, 2, ... .
As a result we obtain:∫

Rn

(
|γ(x)|2 + |λ|2

)
∥u∥2H0

dx+

∫
Rn

∥u(x)∥2
H2m

dx ≤

≤ c(h)

∫
Rn

∥u∥2
H2m−1

dx+ c

∫
Rn

∥f∥2
H0
dx. (5)

To estimate the first addend in the right hand side of inequality (5), we use inequality
(3)

As a result, having taken in (3) ε > 0 so that ε · c(h) = 1
2 , we obtain∫

Rn

|γ(x)|2 + |λ|2 ∥u∥2H0
dx+

∫
Rn

∥u(x)∥2
H2m

dx ≤

≤ c

∫
Rn

∥f∥2
H0
dx+ c(ε, h)

∫
Rn

∥u∥2
H0
dx. (6)

If |λ|2 > 2c(ε, h), then the required inequality (1) follows from (6). ◀

Theorem 2. If the conditions of Theorem 1 are fulfilled, then the operator (L− λE)
−1

:
H0 → H0 is a bounded operator for each λ ∈ l, |λ| ≥ λ0.

Proof. To prove the theorem, it suffices to prove the existence of the solution to the
equation

L(x,D)u− λu = f(x) for any f(x) ∈ H0.

Let θi(x) be the same partition of unity that was used when proving Theorem 1,
fi = θif.

Let us consider the equation∑
|α|=2m

Aα(Pi)D
αwi +A0(Pi)wi = fi(x).
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Its solution exists and can be determined by applying Fourier transform by the fol-
lowing formula:

w̃i =

 ∑
|α|=2m

Aα(Pi)(iξ)
α +A0(Pi)− λ

−1

f̃i(λ).

Let σi(x) be such a partition of unity that σi(x)ψi(x) ≡ ψi.We determine the function

w(x) =

∞∑
i=1

σi(x)wi(x) = L(f).

Then we have:

(L− λE)w =

∞∑
i=1

 ∑
|α|=2m

σi(x)Aα(x)D
αwi+

∑
0<|α|≤2m

|α′|>0,α′+β′=α

dα′β′Aα(x)D
β′
wi+

+A0(x)σiwi − λσi(x)wi] =

=

∞∑
i=1

σifi + ∑
|α|=2m

σi [Aα(x)−Aα(xi)]D
αwi+

+
∑

α′+β′=α

Aα(x)dα′β′(x)Dβ′
wi − (A0(x)−A0(xi))σiwi

 =

= f +

∞∑
i=1

 ∑
|α|=2m

σi(x)[Aα(x)−Aα(x0)]D
αwi+

+
∑

α′+β′=α

Aα(x)dα′β′(x)Dβ′
wi + (A0(x)−A0(x0))σiwi

 = f + Tf. (7)

Here dα′β′(x) are infinitely differentiable functions with a support in Si, T is an operator
H0 → H0 . Estimate ∥T∥. For |α| = 2m we have

∥σi(x) (Aα(x)−Aα(x0))D
αwi∥H0

≤ ε

∫
Si

∥Dαwi∥2H0
dx.

If h is rather small, hen condition III yields

(|γ(x)|+ |λ|) ∥w∥H0
+ ∥w∥H2m

≤ c ∥f∥H0
.

This means that

∥σi(x) [Aα(x)−Aα(xi)]D
αwi∥H0

≤ cε ∥f∥H0
. (8)
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Furthermore, ∥∥∥Aα(x)dα′β′(x)Dβ′
wi

∥∥∥
H0

≤ c ∥w∥H2m−1
≤

≤ ε ∥w∥H2m
+ ∥w∥H0

≤ ε ∥f∥H0
+ (1 + |λ|)−1cε ∥fi∥H0

. (9)

Finally we obtain

∥A0(x)−A0(xi)σiwi∥H0
≤ cε ∥fi∥H0

. (10)

From (8)-(10) it follows that ∥T∥ ≤ 1

2
if h is rather small.

So, (L− λE)w = f + Tf.
By the Banach theorem there exists such φ that Tφ+ φ = f .
Hence we obtain that (L− λE)φ = Tφ+ φ = f.
The, the solvability of equation (7) is proved. ◀

We observe that Cauchy problem and existence of solutions of boundary value prob-
lems and asymptotic properties of solutions for ordinary operator-differential equations
was studying by M.G. Gasymov [6], Yu.A. Dubinskii [5], B.A. Plamenevskii [10], S.S.
Mirzoev [9], A.A. Shkalikov [13] and others. In comporve with the ordinary operator-
differential equations the partial operator-differential equations was small investigated.
In this direction we can refer to the works of S. Agmon, A. Douglis, L. Nirenberg [1], G.I.
Aslanov [2]-[4], A.A. Shkalikov [13], V.B. Shakhmurov [11], V.B. Shakhmurov and Azad
A. Babaev [12] and others. In general the studying of the solutions of operator-differential
equations we refer to detail to fundamental monographies S.G. Krein [7], J.L. Lions and
E. Magenes [8] and S.Ya. Yakubov [14].
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